Sensitivity of Chemical Transport Model Simulations to the Duration of Chemical and Transport Operators

S. Philip¹,* R. V. Martin¹,² and C. A. Keller³

¹Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
²Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
³School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA

* Corresponding author: Sajeev Philip, Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada (philip.sajeev@dal.ca)

Abstract

Chemical transport models involve considerable computational expense. Fine temporal resolution offers accuracy at the expense of computation time. Assessment is needed of the sensitivity of simulation accuracy to the duration of chemical and transport operators. We conduct a series of simulations with the GEOS-Chem chemical transport model at different temporal and spatial resolutions to examine the sensitivity of simulated atmospheric composition to temporal resolution. Subsequently, we compare the tracers simulated with operator durations from 10 min to 60 min as typically used by global chemical transport models, and identify the timesteps that optimize both computational expense and simulation accuracy. We found that longer transport
timesteps increase concentrations of emitted species such as nitrogen oxides and carbon monoxide since a more homogeneous distribution reduces loss through chemical reactions and dry deposition. The increased concentrations of ozone precursors increase ozone production at longer transport timesteps. Longer chemical timesteps decrease sulfate and ammonium but increase nitrate due to feedbacks with in-cloud sulfur dioxide oxidation and aerosol thermodynamics. The simulation duration decreases by an order of magnitude from fine (5 min) to coarse (60 min) temporal resolution. We assess the change in simulation accuracy with resolution by comparing the root mean square difference in ground-level concentrations of nitrogen oxides, ozone, carbon monoxide and secondary inorganic aerosols with a finer temporal or spatial resolution taken as truth. Simulation error for these species increases by more than a factor of 5 from the shortest (5 min) to longest (60 min) temporal resolution. Chemical timesteps twice that of the transport timestep offer more simulation accuracy per unit computation. However, simulation error from coarser spatial resolution generally exceeds that from longer timesteps; e.g. degrading from 2° x 2.5° to 4° x 5° increases error by an order of magnitude. We recommend prioritizing fine spatial resolution before considering different temporal resolutions in offline chemical transport models. We encourage the chemical transport model users to specify in publications the durations of operators due to their effects on simulation accuracy.

1 Introduction

Global and regional chemical transport models (CTMs) have a wide range of applications in studies of climate, air quality, and biogeochemical cycling. The last few decades have witnessed rapid development of modeling sophistication to tackle these issues, but that development is associated with increasing computational expense. Eulerian models divide the atmosphere into numerous (10⁴-10⁵) grid boxes and solve a mass continuity equation to simulate atmospheric
composition. The concentrations of the simulated species are sensitive to the temporal resolution of the CTM. Attention is needed to understand how temporal resolution affects model performance.

Numerous studies have examined the sensitivity of simulations to grid resolution for ozone (Jang et al., 1995a; 1995b; Esler et al., 2004; Wild and Prather, 2006), ozone production efficiency (Liang and Jacobson 2000), and ozone sensitivity to precursor emissions (Cohan et al., 2006). Biases can be reduced by simulating sub grid scale processes such as emission plumes from point sources (Sillman et al., 1990; Gillani and Pleim, 1996), aircraft exhaust (Meijer et al., 1997; Kraabol et al., 2002), ship exhaust (Vinken et al., 2011), and lightning (Cooper et al., 2014). Simulation error increases proportional to the size of the horizontal grid (Wild and Prather, 2006; Prather et al., 2008). The spatiotemporal variation of tropospheric carbon monoxide is better represented with finer grid resolution (Wang et al., 2004; Chen et al., 2009; Yan et al., 2014). Moreover, fine horizontal resolution is important for air quality exposure assessment and health impact studies (Punger and West, 2013; Fountoukis et al., 2013; Thompson et al., 2014; Li et al., 2015). Fine vertical resolution can better represent convection (Rind et al., 2007; Arteta et al., 2009). Simulations are also sensitive to temporal resolution (Mallet et al., 2007; Mallet and Sportisse, 2006), however, few studies have examined this sensitivity.

CTMs solve the continuity equation of around hundred chemical species, each with number density \(n \), for individual grid boxes defined in the Eulerian model.

\[
\frac{\partial n}{\partial t} = -\nabla \cdot n U + P - L \tag{1}
\]

\(\frac{\partial n}{\partial t} \) represents the local temporal evolution of \(n \). \(-\nabla \cdot n U \) represents the transport flux divergence term, where \(U \) is the wind velocity vector. \(P \) and \(L \) are the local production and loss terms.
respectively. Typically, the above equation is discretized in space, and the continuity equation is simulated as a system of coupled non-linear partial differential equations with chemical and transport operators. These operators are usually simulated sequentially through operator splitting (McRae et al., 1982) which is found to increase computational efficiency (Kim and Cho, 1997).

The transport operator involves solving the 3-D advection equation using efficient numerical schemes (Prather, 1986; Rood, 1987). The Courant number \(C_r \) which relates the product of the wind speed \(u \) and the transport timestep \(T \) to the length of the grid box \(x \),

\[
C_r = \frac{u \times T}{x}
\]

is kept less than unity for stability in advection schemes based on the Courant-Freidrich-Lewy criterion (Courant et al., 1967). Semi-Lagrangian numerical schemes (Lin and Rood, 1996) have been developed to accommodate higher \(C_r \), and thereby allow coarser transport timesteps for faster computation. The chemical operator representing the temporal evolution of local sources and sinks involves numerically solving a system of coupled ordinary differential equations using efficient solvers (Hertel et al., 1993; Jacobson and Turco, 1994; Damian et al., 2002). For computational convenience, production and loss terms are also simulated as individual operators. The order in which operators are applied can affect performance (Sportisse, 2000; Santillana et al., submitted).

The operator splitting method requires the coupling between individual operators to be negligible over each timestep. However, reducing timesteps increases computational expense. Attention is needed to this tradeoff.

We examine the sensitivity of a CTM to temporal resolution by conducting a series of simulations at different temporal and horizontal resolutions. We then identify the optimal temporal resolution for the range of timesteps from 10 min to 60 min as usually used by global CTMs (e.g., Horowitz
et al., 2003; Huijnen et al. 2010). Section 2 describes the sensitivity simulations, as well as the method to quantify the simulation error, and the method to identify the simulation timesteps that best account for both computational expense and simulation accuracy. Comparison of the sensitivity simulations, description of resolution-dependent errors, and the identification of appropriate chemical and transport timesteps are examined in section 3.

2 Materials and Methods

2.1 GEOS-Chem simulations

We conduct a series of sensitivity simulations with the GEOS-Chem CTM (version 10-01; www.geos-chem.org) at different temporal and horizontal resolutions to examine the individual sensitivities to chemical and transport timestep durations. The GEOS-Chem model (Bey et al., 2001) is used by about 100 research groups worldwide to simulate the oxidant-aerosol system. GEOS-Chem has the capability to be driven with several generations of assimilated meteorological data from the Goddard Earth Observing System (GEOS) at the NASA Global Modeling Assimilation Office (GMAO). For computational expedience, GEOS-Chem global simulations are often conducted using horizontal resolutions of either 4° x 5° or 2° x 2.5° degraded from the native resolution of GEOS meteorology. GEOS-Chem also has the capability for nested regional simulations where the global model provides dynamic boundary condition to the regional grids (Wang et al., 2004; Chen et al., 2009; Zhang et al., 2011; van Donkelaar et al., 2012). We use the GEOS-5 (or GEOS-5.2.0) meteorology available at a native horizontal resolution of 0.5° x 0.667° (Rienecker et al., 2008). It includes three-hour averaged 2-D fields like mixed layer depth, and six-hour averaged 3-D fields such as zonal and meridional wind, convective mass flux. The height of the lowest level of the model is approximately 130 meters above the sea level, with 47 vertical levels.
GEOS-Chem performs tracer advection (A), vertical mixing (V), cloud convection (Z) and wet deposition (W) for every transport timestep (T), as well as dry deposition (D), emissions (E), and chemistry (G) for every chemical timestep (C) in the following order,

\[A(T) \cdot D(C) \cdot E(C) \cdot V(T) \cdot Z(T) \cdot G(C) \cdot W(T) \]

(3)

The traditional transport timesteps are 30 minutes for the 4° x 5° resolution, 15 minutes for the 2° x 2.5° resolution, 10 min for 0.5° x 0.667° resolution, and 5 min for 0.25° x 0.312° simulations. The traditional chemical timesteps have varied from either 60 min or twice the transport timestep based on the Strang operator splitting scheme (Strang, 1968) which follows \(T \cdot C \cdot T \cdot T \cdot C \cdot T \) order repetitively with \(C = 2 \times T \). We also test an alternate splitting scheme which follows \(T \cdot C \cdot T \cdot C \) order repetitively with \(C = T \).

Advection is based on the multi-dimensional flux-form semi-Lagrangian advection scheme (Lin and Rood, 1996; Lin et al., 1994), with an additional pressure-fixer algorithm implemented for the conservation of tracer mass (Rotman et al., 2004). Transport by convection is coupled (Balkanski et al., 1993; Wu et al., 2007) with gas-aerosol wet deposition (Liu et al., 2001; Wang et al., 2011; Amos et al., 2012). GEOS-Chem uses an internal timestep of 5 min for convective mixing. We use a non-local boundary layer mixing scheme for vertical transport (Holtslag and Boville, 1993, Lin and McElroy, 2010).

Emissions are processed through the HEMCO module (Keller et al., 2014). A resistance-in-series method is used for dry deposition of species (Wesely, 1989; Wang et al., 1998; Zhang et al., 2001; Fisher et al., 2011).

GEOS-Chem uses a Sparse Matrix Vectorized GEAR II chemistry solver (Jacobson and Turco, 1994; Jacobson, 1995; 1998). The oxidant-aerosol chemistry simulation includes organic and black
carbon (Park et al., 2003), mineral dust (Fairlie et al., 2007), sea salt (Alexander et al., 2005; Jaegle et al., 2011), and the sulfate-nitrate-ammonium system (Park et al., 2004). The photolysis frequency is calculated (Mao et al., 2010) at the middle of the chemical timestep using the Fast-JX algorithm (Bian and Prather, 2002). Simulation of gas-aerosol interactions are performed by aerosol extinction effects on photolysis rates (Martin et al., 2003), and heterogeneous chemistry (Jacob, 2000) with aerosol uptake of N$_2$O$_5$ (Evans and Jacob, 2005) and HO$_2$ (Mao et al., 2013). The ISORROPIA II thermodynamic module (Fontoukis and Nenes, 2007) performs aerosol-gas partitioning (Pye et al., 2009).

We conduct simulations for 2010 July at two horizontal resolutions of 4° x 5° and 2° x 2.5° globally, and 0.5° x 0.667° over the North America (140°W–40°W, 10°N–70°N) and East Asia (70°W–150°W, 11°S–55°N) nested regions. We use the 4° x 5° global simulation to archive dynamic boundary conditions every three hours for the nested models. We use one month spin up with each GEOS-Chem simulation to reduce the influence of initial conditions.

2.2 Computing platform

We conduct all simulations on the same computing platform to compare their computational performance. We use the Glooscap cluster of the Atlantic Computational Excellence Network (ACENET) Consortium of Canadian Universities (http://www.ace-net.ca/wiki/Glooscap). The operating system is Linux 4.8. We use Intel Fortran compiler version 12. Each GEOS-Chem simulation is submitted as a 16-thread parallelized job on a single node.

We calculate the CPU time for the month of July for each operator separately using the Fortran-intrinsic routine, CPU_TIME. We found this value identical to the one calculated using the Linux command ‘qacct –j’. To reduce the effects of other jobs on the shared cluster, we repeat simulations
five times, while excluding data output operations to minimize sensitivity to system input/output, and use the median to represent CPU time.

2.3 Assessing simulation error

Assessing simulation error versus timestep through comparison with observations is impaired by imperfect model processes, by the sparseness of measurements, and by model-observation representativeness biases. Therefore, we treat the simulation with the finest temporal resolution as the most accurate. We take as ‘Truth’ the concentrations simulated with a chemical timestep (C) of 10 minutes and a transport time step (T) of 5 minutes (represented as C10T05). Finer resolutions are computationally prohibitive. We define the simulation error E_{sim}^s for species s as the root mean square error (RMSE) of the species concentrations simulated with the finest resolution ('Truth') and the simulation under consideration ('Sim'), normalized by the concentrations in simulation ‘Truth’,

$$E_{sim}^s = \sqrt{\frac{\sum_{i=1}^{N} (Truth_i^s - Sim_i^s)^2}{\sum_{i=1}^{N} Truth_i^s}}$$

where, i represents a particular grid box, with a total number of N grid boxes of interest. RMSE in the numerator is chosen instead of absolute difference to more heavily penalize extrema. Normalization with the mass of the true simulation is intended to cross-compare E_{sim}^s of different species. E_{sim}^s captures the variation of a species s from the true simulation.

Here, we focus on four key species relevant to atmospheric chemistry, namely nitrogen oxides ($NO_x = NO + NO_2$), ozone (O_3), carbon monoxide (CO), and secondary inorganic aerosols (SIA: sum of sulfate, nitrate and ammonium). These species represent a range of lifetimes from a day (NO_x) to weeks (CO). The focus on SIA is designed to devote more attention to chemically active
species than to mineral dust and sea salt. We sample the instantaneous values of simulated ground-level concentrations of these atmospheric species every 60 min to span the diurnal variation of chemical environments. We focus on concentrations in July near the Earth’s surface when and where chemical and transport timescales tend to be short.

2.4 Identifying the optimal temporal resolution

A practical way to select optimal chemical and transport timesteps is to identify the simulation with the lowest error \(E_{sim}^s \) per unit of computation time. To quantify the simulation accuracy per unit CPU time, we propose a simple metric, the normalized error \(NE \) which represents a tradeoff between the simulation accuracy, and the associated computation expense. This is performed by normalizing the simulation error \(E_{sim}^s \) for species \(s \) by the CPU time \(t \) for the simulation under consideration \(t_{sim} \) and for a reference simulation \(t_{ref} \), and taking the mean of four species.

\[
NE = \left(\frac{1}{4} \times \sum_{s} \frac{E_{sim}^s}{E_{ref}^s} \right) \times \frac{t_{sim}}{t_{ref}}
\]

(5)

We normalize \(E_{sim}^s \) by the reference \(E_{ref}^s \) so that the normalized error for each species is of similar magnitude. The variation of \(NE \) across timesteps is unaffected by the choice of reference simulation; C10T10 is used here. The simulation with the lowest \(NE \) can identify an optimal chemical and transport resolution.

3 Results and discussion

Figure 1 shows the computational performance for the series of GEOS-Chem simulations conducted here. The CPU time decreases by an order of magnitude from fine to coarse temporal
resolution. The CPU time increases by about a factor of 4 from $4^\circ \times 5^\circ$ to $2^\circ \times 2.5^\circ$ and another factor of 2 to a single nested simulation at $0.5^\circ \times 0.667^\circ$. Comparison of individual CPU times for chemical and transport operators shows that performing a single cycle of all chemical operations takes ~4 times that of a single cycle of transport operations at the global scale. This factor is reduced for nested simulations due in part to the additional CPU time for simulating boundary conditions.

Figure 2 illustrates the sensitivity of the simulations to chemical and transport operators at $2^\circ \times 2.5^\circ$ horizontal resolution. The left columns show the tracer concentrations for the ‘true’ simulation (C10T05). The middle column shows the difference in tracer concentrations from doubling the transport timestep duration. Increasing the transport timestep tends to increase concentrations of emitted species like CO and NO$_x$ over source regions since tracers are more uniformly mixed by long timesteps before loss processes such as deposition and chemistry occur. More homogeneous fields have lower dry deposition and chemical loss rates. The increase in CO decreases OH over source regions. Increasing concentrations of ozone precursors increases ozone production (P [O$_3$]). Wild and Prather (2006) similarly found that ozone production increases at coarser horizontal resolution. Increasing the transport timestep duration increases SIA components, especially over the source regions of East Asia, North India, and North America.

The right column in Fig. 2 shows the change in tracer concentrations from increasing the chemical timestep. Hydroxyl radical concentrations increase, NO$_x$ concentrations decrease, and P [O$_3$] decreases with increasing chemical timesteps over source regions. Berntsen and Isaken (1997) found that the error introduced by coarser chemical timesteps is higher in polluted regions than the clean background due to the increased time lag, and invariant production and loss across rapid chemical cycles. A longer chemical timestep decreases sulfate and ammonium but increases nitrate...
over source regions. Inspection of \(\text{SO}_2 \) and \(\text{H}_2\text{O}_2 \) fields indicates that sulfate formation through \(\text{H}_2\text{O}_2 \) in clouds decreases at longer chemical timesteps. In turn, \(\text{SO}_2 \) and \(\text{NH}_3 \) concentrations increase at longer chemical timesteps due to the corresponding decreases in ammonium sulfate or ammonium bisulfate. The additional free ammonia at longer chemical timesteps tends to promote regional ammonium nitrate formation depending on local thermodynamics. An increase of total \(\text{SIA} \) mass with the increasing chemical timestep is driven by nitrate and ammonium, and partially compensated by a reduction in sulfate, especially downwind of source regions. We found similar spatial patterns for other timestep combinations, and other horizontal resolutions.

Figures 3 shows the simulation error for nitrogen oxides, ozone, carbon monoxide and secondary inorganic aerosols with varying temporal resolution at \(2^\circ \times 2.5^\circ \) horizontal resolution. Simulation errors for all these major species increase by more than a factor of 5 from the shortest to longest temporal resolution. Errors increase fairly smoothly with increasing chemical and transport timestep until the transport timestep exceeds 30 min. Then the large Courant number increases errors by an order of magnitude for long lived species of \(\text{O}_3 \) and \(\text{CO} \). Simulation errors for other horizontal resolutions follows similar pattern.

Figure 4 shows the difference in simulated tracers at \(2^\circ \times 2.5^\circ \) horizontal resolution for the GEOS-Chem traditional (C30T15) minus the finest timesteps considered (C10T05). The spatial variation for the monthly mean ground-level concentrations is generally within 5-15\% for short lived species like \(\text{NO}_x \) and SIA, and within 1\% for longer lived species like \(\text{O}_3 \) and \(\text{CO} \). Santillana et al. (submitted) similarly found an upper limit of 10\% for operator splitting errors. However, the maximum hourly spatial variation can exceed 50\% for short lived species and 5\% for the longer lived species. The spatial pattern of extrema resembles that of the monthly mean, albeit with more heterogeneity from synoptic variation.
We also examined the diurnal variation and vertical profile of extrema. Extrema arise from all times of day with a slight tendency for larger values for NO_\textsubscript{x} at night, for ozone near sunrise and sunset, and for SIA and CO near noon. Zonal mean vertical profiles exhibit largest differences in the lower troposphere for NO_\textsubscript{x} and SIA, with more homogeneous differences throughout the troposphere for O_3 and CO. Near the subtropical jets of the upper troposphere O_3 and CO have maximum extrema of up to 3%.

Figure 5 shows the normalized error for the GEOS-Chem simulations at various spatial and temporal resolutions. The NE is significantly higher with C = T than C = 2 x T. We confirmed this tendency with different choices of truth (such as C05T05, C10T10) or reference (such as C10T05) simulations. This finding motivates the traditional approach of using C = 2 x T in prior GEOS-Chem simulations. Applying the chemical operator as frequently as the transport operator (with C = T) appears to increase computation cost with little benefit in accuracy. The NE for all three horizontal resolutions has a noisy minima with a chemical timestep of 20 min and a transport timestep of 10 min (C20T10). A unit of computation time has a similar efficiency for a small range of timesteps from 10 min to 20 min. We found similar patterns in the variation of NE with timesteps with NE calculated for selected domains, such as over Northern Hemisphere, nested model regions, land grid boxes, and over the entire troposphere. We conducted additional simulations at 4° x 5° horizontal resolution for January 2011 with a spin up of 7 months, and found similar patterns in NE.

The simulation error decreases by 40-50% (Fig. 3) by changing the resolution from the traditional (C30T15) to the optimal (C20T10) at 2° x 2.5° horizontal resolution. The relative spatial variations are <10% for NO_\textsubscript{x} and SIA, and <1% for O_3 and CO. However, the CPU time increases by 20% by the increase in temporal resolution.
Table 1 shows the simulation error at 4° x 5° horizontal resolution with truth at 2° x 2.5° resolution (C10T05) to investigate the tradeoff between temporal and horizontal resolution. The simulation error for all species at 4° x 5° resolution increases by an order of magnitude compared to 2° x 2.5° resolution for any choice of timestep tested here. The error in this configuration is dominated by representativeness differences between 4° x 5° and is insensitive to timestep. Numerical errors due to advection processes generally exceed those from operator splitting (e.g., Prather et al., 2008; Santillana et al., submitted). We therefore recommend prioritizing horizontal resolution over temporal resolution for offline CTMs using time-averaged meteorological fields as tested here. As meteorological fields used in CTMs become available at finer temporal resolution, the value of shorter timesteps should further increase. We encourage the CTM users to specify the durations of operators in publications due to its effect on simulation accuracy.

4 Conclusions

The computational expense of chemical transport models warrants investigation into their efficiency and accuracy. Solving the continuity equation in CTMs through operator splitting method offers numerical efficiency, however, few studies have examined the implications of operator duration on simulation accuracy. We conducted simulations with the GEOS-Chem model for multiple choices of timestep duration from 10 min to 60 min as typically used by global CTMs. We found that longer transport timesteps increase ozone precursors and ozone production over source regions since a more homogeneous distribution reduces loss through chemical reactions and dry deposition. Longer chemical timesteps decrease NOx and ozone production over source regions. Longer chemical timesteps reduce sulfate and ammonium concentrations, however increase nitrate due to feedbacks with in-cloud SO2 oxidation and local aerosol thermodynamics.
We investigated the computational efficiency with the GEOS-Chem model, and found that the simulation duration decreases by an order of magnitude from fine (C10T05) to coarse (C60T60) temporal resolution. The chemical operator consumes about four times the CPU time of the transport operator. We subsequently compared the root mean square differences in the ground-level concentrations of nitrogen oxides, ozone, carbon monoxide and secondary inorganic aerosols with a finer temporal or spatial resolution taken as truth, and estimated the simulation error. Simulation error for these species increases by more than a factor of 5 from the shortest to longest temporal resolution.

In order to account for simulation accuracy with computational cost, we proposed a metric, normalized error that identifies the temporal resolution with respect to CPU cost. We recommend the approach of using $C = 2 \times T$ for all horizontal resolutions. The normalized error exhibits a noisy minimum for a chemical timestep of 20 min and transport timestep of 10 min for the horizontal and temporal resolutions considered here. Nonetheless, the simulation error from changing spatial resolution exceeds that from changing temporal resolution. We recommend choosing the finest possible spatial resolution before considering different temporal resolutions in offline CTMs with time-averaged archived meteorological fields as tested here. The importance of shorter timesteps should increase with the availability of time-averaged meteorological fields at higher temporal resolution. Short operator timesteps could offer even greater benefits to simulation accuracy in online CTMs that offer meteorological fields at temporal resolutions closer to timestep duration. We encourage the CTM users to specify in publications the durations of operators due to their effects on simulation accuracy.
Code Availability

The GEOS-Chem code is freely accessible to the public, by following the guidelines in http://wiki.geos-chem.org/. This work used GEOS-Chem version 10-01.

Acknowledgements

This work was supported by NSERC and ACENET. We thank Colette Heald, Daniel Jacob and Patrick Kim for useful comments at the early stages of this research.

References

Table 1: Mean Error* versus grid resolution with truth at 2° x 2.5° horizontal resolution

<table>
<thead>
<tr>
<th>Species</th>
<th>Simulation Error (1 x 10⁻⁴)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4° x 5° resolution</td>
</tr>
<tr>
<td>Nitrogen Oxides</td>
<td>38.04</td>
</tr>
<tr>
<td>Secondary Inorganic Aerosols</td>
<td>3.06</td>
</tr>
<tr>
<td>Ozone</td>
<td>6.45</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>18.47</td>
</tr>
</tbody>
</table>

* Mean taken for timesteps ≤ 30 min.
Figure 1: CPU time for GEOS-Chem simulations with various timesteps at three horizontal resolutions. Global simulations are at 4° x 5° (top) and 2° x 2.5° (middle) resolutions. The bottom panel contains results for the average of two nested regions North America and East Asia at 0.5° x 0.667° resolution. Colored lines represent the CPU time for simulating transport (red) and chemical (blue) operators, and the sum of the two (green). Error bars represent standard error over five simulations. Simulations are represented in the abscissa as CccTtt with chemical timestep, C = cc minutes, and transport timestep, T = tt minutes.
Figure 2a: Sensitivity of simulated tracers to the duration of chemical and transport operators. The left column contains monthly mean ground-level concentrations simulated with the finest timesteps considered (C10T05) at 2° x 2.5° horizontal resolution. Other columns contain the absolute differences from doubling the transport timestep to C10T10 (middle), and doubling the chemical timestep to C20T05 (right). Each row from top to bottom represents carbon monoxide (CO), nitrogen oxides (NOx), hydroxyl radical (OH), and the production of ozone (P[O3]). Simulations are represented as CccTtt with chemical timestep, C = cc minutes, and transport timestep, T = tt minutes.
Figure 2b: As described in Fig. 2a, but each row from top to bottom represents ozone (O$_3$), sulfur dioxide (SO$_2$), sulfate (SO$_4^{2-}$), and nitrate (NO$_3^-$) respectively.
Figure 3: Simulation error of different species (E_{sim}^s, eq. 4) for GEOS-Chem with various timesteps at $2^\circ \times 2.5^\circ$ horizontal resolution. Colored lines and dots represent the simulation error for nitrogen oxides (NO$_x$; red), secondary inorganic aerosols (SIA; blue), ozone (O$_3$; green), and carbon monoxide (CO; magenta). Simulations are represented in the abscissa as CccTtt with chemical timestep, $C = cc$ minutes, and transport timestep, $T = tt$ minutes.
Figure 4: Effect on simulated tracers of changing from the GEOS-Chem traditional timesteps (C30T15) to the finest timesteps considered (C10T05). The top row contains ground-level concentrations simulated with the C30T15 timesteps at 2° x 2.5° horizontal resolution. The next two rows contain the monthly mean differences (C30T15 minus C10T05) for absolute (second row) and relative (third row) differences. The two lowest rows contain the maximum differences (C30T15 minus C10T05) for absolute (fourth row) and relative (bottom row) differences. Each column from left to right represents nitrogen oxides (NO\textsubscript{x}), secondary inorganic aerosols (SIA), ozone (O\textsubscript{3}), and carbon monoxide (CO).
Figure 5: Normalized error \((NE, eq. 5)\) for GEOS-Chem simulations with various spatial and temporal resolutions. Colored lines and dots represent the \(NE\) for the global simulations at \(4^\circ \times 5^\circ\) (red) and \(2^\circ \times 2.5^\circ\) (blue), and the nested simulations at \(0.5^\circ \times 0.667^\circ\) (green) horizontal resolutions. Error bars represent standard error in CPU time. Simulations are represented in the abscissa as \(CccTtt\) with chemical timestep, \(C = cc\) minutes, and transport timestep, \(T = tt\) minutes.