Global Climatology of Fine Particulate Matter Concentrations Estimated from Remote-Sensed Aerosol Optical Depth

Aaron van Donkelaar¹, Randall Martin¹,², Ralph Kahn³ and Robert Levy³

Air Pollution and Health: Bridging the Gap
March 22-26, 2010

¹Dalhousie University ²Harvard-Smithsonian ³NASA Goddard
We relate satellite-based measurements of aerosol optical depth to $PM_{2.5}$ using a global chemical transport model.

Following Liu et al., 2004:

\[\text{Estimated } PM_{2.5} = \eta \cdot \tau \]

\[\eta \]

- vertical structure
- aerosol type
- meteorological effects
- meteorology
- diurnal effects

\[\tau \]

Combined MODIS/MISR Aerosol Optical Depth

van Donkelaar et al., EHP, in press
MODIS and MISR τ

MODIS τ
- 1-2 days for global coverage
- Requires assumptions about surface reflectivity

MISR τ
- 6-9 days for global coverage
- Simultaneous surface reflectance and aerosol retrieval

Mean τ 2001-2006 at 0.1° x 0.1°
Agreement varies with surface type

9 surface types, defined by monthly mean surface albedo ratios, evaluation against AERONET AOD
Combining MODIS and MISR improves agreement

Combined MODIS/MISR

\[r = 0.63 \] (vs. in-situ PM$_{2.5}$)

MODIS

\[r = 0.40 \] (vs. in-situ PM$_{2.5}$)

MISR

\[r = 0.54 \] (vs. in-situ PM$_{2.5}$)
AOD filters can be applied globally
Global CTMs can directly relate PM$_{2.5}$ to τ

- Detailed aerosol-oxidant model
- $2^\circ \times 2.5^\circ$
- 54 tracers, 100’s reactions
- Assimilated meteorology
- Year-specific emissions
- Dust, sea salt, sulfate-ammonium-nitrate system, organic carbon, black carbon, SOA

GEOS-Chem
Significant agreement with coincident ground measurements over NA

<table>
<thead>
<tr>
<th></th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIS τ</td>
<td>0.40</td>
</tr>
<tr>
<td>MISR τ</td>
<td>0.54</td>
</tr>
<tr>
<td>Combined τ</td>
<td>0.63</td>
</tr>
<tr>
<td>Combined PM$_{2.5}$</td>
<td>0.77</td>
</tr>
</tbody>
</table>

$y = 1.07x - 1.75; r = 0.77$
$n = 1057$

Annual Mean PM$_{2.5}$ [µg/m3] (2001-2006)
Method shows global agreement

- Annual mean measurements
 - Outside Canada/US
 - 244 sites (84 non-EU)
 - $r = 0.83$ (0.83)
 - slope = 0.86 (0.91)
 - bias = 1.15 (-2.64) $\mu g/m^3$
High global PM$_{2.5}$ exposure

- Satellite-PM$_{2.5}$ + population map → exposure
- 80% of world population exceeds WHO guideline of 10 μg/m3
- 50% of eastern Asia exceeds 35 μg/m3