CHEMICAL SPECIATION OF PM$_{2.5}$ IN MAJOR CITIES WORLDWIDE

Graydon Snider
Halifax, NS, Canada
April 18th, 2016

SPARTAN Team
Graydon Snider, Crystal L. Weagle, Kalaivani K. Murdymootoo, Amanda Ring, Yvonne Ritchie, Emily Stone, Ainsley Walsh, Clement Akoshile, Nguyen Xuan Anh, Jeff Brook, Fatimah D. Qonitan, Jinlu Dong, Derek Griffith, Kebin He, Brent N. Holben, Ralph Kahn, Nofel Lagrosas, Puji Lestari, Zongwei Ma, Amit Misra, Eduardo J. Quel, Abdus Salam, Bret Schichtel, Lior Segev, S.N. Tripathi, Chien Wang, Chao Yu, Qiang Zhang, Yuxuan Zhang, Michael Brauer, Aaron Cohen, Mark D. Gibson, Yang Liu, J. Vanderlei Martins, Yinon Rudich, Randall V. Martin

AS3.21 (R. 2.91), Megacities session
GLOBAL SIGNIFICANCE OF PM$_{2.5}$

- **Dhaka** > 50 μg m$^{-3}$
- **Beijing** > 70 μg m$^{-3}$
- **Hanoi** > 40 μg m$^{-3}$
- **Rehovot** 15-150 μg m$^{-3}$

- WHO target of PM$_{2.5}$ = 10 μg m$^{-3}$
- Adverse lung, cardiovascular effects
- 3 million* annual deaths worldwide (3% of all deaths)

NEED TO EVALUATE SATELLITE-DERIVED PM$_{2.5}$

PM$_{2.5,\text{surface}} = f(\text{AOD})$

= f(\text{AOD, RH, mixing, composition, diurnal, ...})

AOD = aerosol optical depth

van Donkelaar, et al ES&T 2016, 50, 3762
SPARTAN = SURFACE PARTICULATE MATTER NETWORK

SPARTAN Headquarters:
Dalhousie U, Halifax NS

Urban Areas:
- Beijing
- Kanpur
- Hanoi
- Buenos Aires
- Dhaka
- Manila
- Rehovot

Ongoing measurements of ground-level PM$_{2.5}$
colloqued with AOD measurements (sun photometer)

- Each site collocated with sun photometer
 (AERONET)

Sun Photometer: AOD at 550 nm

SPARTAN INSTRUMENTS

Each SPARTAN station includes two instruments:

Physical sampling: aerosol filters

Optical sampling: Nephelometer

Multi-day measurements per filter

*AirPhoton.com
FILTER WEIGHING

• Cleanroom facility (< 100 particles/cm³)
• Follows USEPA protocols:
 • T-range: 20 – 25 °C
 • RH-range = 30 – 40 %
• Daily mass calibrations
DECONSTRUCTING FILTER MASS

<table>
<thead>
<tr>
<th>Species</th>
<th>Rel. Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil = {Mg, Al, Ti, Fe}</td>
<td>8 – 23%</td>
</tr>
<tr>
<td>Sea Salt = {Na}</td>
<td>1 – 10%</td>
</tr>
<tr>
<td>Trace Element Oxides = {V, Zn, As, Cd, Ba, Pb}</td>
<td>< 1%</td>
</tr>
<tr>
<td>Ammonium nitrate = {NO}_3</td>
<td>2 – 10%</td>
</tr>
<tr>
<td>Ammonium sulfate = {SO}_4, NH}_4</td>
<td>5 – 26%</td>
</tr>
<tr>
<td>Effective Black Carbon = {Reflectance}</td>
<td>2 – 13%</td>
</tr>
</tbody>
</table>
Residue Matter (RM*) = Total Mass – [Inorg.] – [PBW]

Particle-bound water (PBW*) = f(RH)

*RM and PBW are indirectly measured

Trace Metals: Al, Mg, Ti, Fe, V, Cr, Mn, Zn, As, Ba, Pb
GLOBAL PM$_{2.5}$ COMPOSITION

PM$_{2.5}$

Site	Zn:Al
Hanoi | 2.7
Singapore | 1.6
Dhaka | 2.6
M. Cave | 0.1

ESTIMATING PARTICLE-BOUND WATER (PBW)

Hygroscopicity parameter (k-Kohler theory):

\[
\kappa_{m,tot} = \frac{1}{M} \sum_x m_x \kappa_{m,x}
\]

\[
f_m(RH) = 1 + \kappa_{m,tot} \frac{RH}{100 - RH}
\]

\[
PBW = M \times (f_m(35\%) - 1)
\]

1. Average k over PM components
2. Set RH to 35%
3. Add to water total mass

<table>
<thead>
<tr>
<th>Compound</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crustal, BC, TEO</td>
<td>0</td>
</tr>
<tr>
<td>RM/OM</td>
<td>0.10</td>
</tr>
<tr>
<td>ASO_4</td>
<td>0.56</td>
</tr>
<tr>
<td>ANO_3</td>
<td>0.67</td>
</tr>
<tr>
<td>NaCl</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Duplissy et al. ACP, 11, 1155-65, 2011
WATER-MASS CONTRIBUTION

K_v

PM$_{2.5}$

PBW (35% RH)

ANO$_x$, ASD$_x$, Sea Salt, EBC, TEO, Crustal, PBW

SPARTAN sites

Buenos Aires, ilorin, Pretoria, Dhaka, Singapore, Bandung, Manila
HOURLY PM$_{2.5}$ ESTIMATES

\[
PM_{2.5, \text{hourly,dry}} = \frac{\langle PM_{2.5, \text{dry}} \rangle}{\langle b_{sp}(RH)/f_v(RH) \rangle} \cdot \frac{b_{sp}(RH)}{f_v(RH)}
\]

Summer 2014 Beijing comparison of PM$_{2.5}$

- \(r^2_{\text{hourly}} = 0.67 \)
- \(n = 148 \)

TRACE ELEMENTS: CRUSTAL ENRICHMENT FACTORS

EF(X) = \frac{\left[\frac{[X]}{[Al]} \right]_{PM2.5}}{\left[\frac{[X]}{[Al]} \right]_{Crust.}}

-Snider et al, ACP in prep, 2016
CORRELATIONS OF SPECIES

All-site weighted average:

- Crustal Material
- Biomass burning
- Coal & industry
- Vehicle dust

Pearson Correlation (r)

Industrial, Road Dust
Biomass (Wood, Coal, Oil)
Natural Dust
SUMMARY

• Ongoing PM$_{2.5}$ and AOD measurements in urban areas:
 - hourly, seasonal, and multi-year time spans

• Characterizing PM$_{2.5}$ mass, composition at a single facility,
 using standardized methods

• Aerosol components show multi-site correlations, trends

• We encourage ideas for new partnerships. For more
 information, please visit spartan-network.org

SPARTAN is an IGAC-endorsed activity

SPARTAN is Funded by NSERC
THANK YOU/DANKE SCHÖN

Myself: Graydon Snider
graydon.snider@dal.ca

Crystal Weagle, PhD Candidate

Prof. Randall Martin

Dalhousie Co-op Students

SPARTAN Site Collaborators

Clement Akoshile, Nguyen Xuan Anh, Fatimah D. Qonitan, Jinlu Dong, Derek Griffith, Kebin He, Ralph Kahn, Nofel Lagrosas, Puji Lestari, Zongwei Ma, Amit Misra, Eduardo J. Quel, Abdus Salam, Bret Schichtel, Lior Segev, S.N. Tripathi, Chien Wang, Chao Yu, Qiang Zhang, Yuxuan Zhang, Yang Liu, Yinon Rudich