Global Dry Deposition of Nitrogen Dioxide Inferred from Space-Based Measurements

Caroline Nowlan and Randall Martin
Dalhousie University and Harvard-Smithsonian Center for Astrophysics

Sajeev Philip
Dalhousie University

Lok Lamsal
NASA Goddard Space Flight Center
NO$_2$ Dry Deposition Flux

- NO$_2$ contributes nitrogen to soil and vegetation through dry deposition
- Impacts of nitrogen deposition
 - Eutrophication and loss of biodiversity
 - Acidification
 - Perturbation of carbon sequestration (e.g. Reay et al., 2008)
- Deposited NO$_2$ is a source of HONO
1. Directly (eddy covariance techniques etc.)
2. Inferential modeling

\[F = - V_d \times C \]

- Usually concentrations come from *in situ* measurements at finite number of sites
- BUT, we can also get \(\text{NO}_2 \) surface concentrations from satellites (Lamsal et al., 2008)
Satellite Observations: OMI

- Ozone Monitoring Instrument on Aura satellite
- Measuring several trace gases using backscattered UV-visible spectra since 2004
- Resolution $13 \times 24 \text{ km}^2$ at nadir
- Satellites can provide global coverage
 - Data in regions with no *in situ* measurements
 - No need to interpolate to get continental deposition
OMI NO$_2$ Tropospheric Columns
2005 - 2007

(a)

NO$_2$ Vertical Columns [1015 molecules cm$^{-2}$]
GEOS-Chem Global Chemical Transport Model

- Used to:
 - Calculate air mass factors for retrieval
 - Infer surface concentrations from measurements
 - Calculate deposition velocities at 0.1° × 0.1°
OMI Global NO$_2$ Dry Deposition at 0.1°×0.1°

- Annual regional budgets
 - USA 0.18 Tg N
 - Europe 0.20 Tg N
 - China 0.18 Tg N
 - Global 1.50 Tg N
Comparisons with Surface Data

- Challenges: differences in scale, biases in \textit{in situ} data, local traffic, NO\textsubscript{x} soil fluxes

\begin{itemize}
 \item OMI
 \item NitroEurope (Flechard et al., 2011)
\end{itemize}
Mean 9 – 35% of NO\textsubscript{y} dry deposition in urban areas is from NO\textsubscript{2}

Peak values of 85%
The Future

- SO_2 (done!), NH_3
- TROPOMI (2015)
- Geostationary instruments (2018+)
 - $\sim 4.5 \times 8 \text{ km}^2$
 - hourly
 - TEMPO (N. America)
 - Sentinel-4 (Europe)
 - GEMS (Asia)