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Torsion and bistability of double-twist elastomers

Matthew P. Leighton, a Laurent Kreplak b and Andrew D. Rutenberg *b

We investigate the elastic properties of anisotropic elastomers with a double-twist director field, which

is a model for collagen fibrils or blue phases. We observe a significant Poynting-like effect, coupling

torsion (fibril twist) and extension. For freely-rotating boundary conditions, we identify a structural

bistability at very small extensional strains which undergoes a saddle-node bifurcation at a critical

strain – at approximately 1% strain for a parameterization appropriate for collagen fibrils. With clamped

boundary conditions appropriate for many experimental setups, the bifurcation is not present. We expect

significant helical shape effects when fixed torsion does not equal the equilibrium torsion of freely-

rotating boundary conditions, due to residual torques.

1 Introduction

Covalently cross-linked elastomer networks are an important
class of materials due to their extensibility, non-linear elasticity
and biological and biomedical applications.1,2 Liquid-crystalline
elastomers are particularly interesting since their anisotropy is
tunable and affects other material properties.3 For example,
liquid-crystalline elastomers can be used as actuators or
sensors.4 Of particular interest is how anisotropy affects the
mechanical properties of liquid-crystal elastomers.

Any liquid crystalline field can be incorporated into an
anisotropic elastomer – including the double-twist anisotropy
of blue phases.5,6 Collagen fibrils, the load bearing element of
mammalian tissues, can be modelled as an elastomeric cylin-
der of cross-linked collagen molecules arranged in such a
double twist configuration.7–10 Keratin macrofibrils also exhibit
a double-twist structure,11 and so should have similar elasto-
meric properties.

Collagen fibrils can be mechanically tested both within their
host tissue12,13 and ex vivo.14–18 Surprisingly, there is still no
experimental consensus on the elastic properties of individual
collagen fibrils for physiological strains below 10%.19 It is likely
that varying levels of hydration, as controlled by osmotic
pressure, explains some of the differences.20 Nevertheless,
considerable variability is still observed within a single study19 –
indicating that fibrils may also differ in other respects.

Intriguingly, collagen fibers (bundles of fibrils) rotate signifi-
cantly under extensional strain.21 Such Poynting-like effects,
coupling torsion and extension, are known to sensitively depend

on material anisotropy.22,23 Helical shapes are also observed for
collagen fibers.21,24,25 Indeed, helical configurations (supercoiling)
are observed for individual collagen fibrils,26 as well as pairs27,28

and larger groups29,30 of fibrils. Such supercoiling is often exhib-
ited by cylindrical objects under torsion.

A recent theoretical study by Giudici and Biggins31 showed
that torsion effects in chiral cylinders can be significant,
though in their study they focused on strain-torsion coupling
with isotropic-nematic phase-transitions rather than mechan-
ical effects of anisotropic elastomers. Their results emphasize
that boundary conditions imposed on individual fibrils or
collections of fibrils are important to consider. One source
of the mechanical variation between fibrils may be differing
torsional boundary conditions imposed by fibril assembly or
during mechanical testing.

Double-twist director fields require curvilinear coordinate
systems and a theoretically-grounded deformation gradient tensor
to dependably study elastic effects. Fortunately, a differential-
geometry approach for evaluating deformation gradient tensors
within curvilinear coordinates exists.32,33 With this, we can evaluate
the deformation gradient tensor of a double-twist elastomer cylin-
der stretched along its axis while allowed to rotate.

In the simpler case where the collagen fibril is not allowed to
rotate, we have already reported interesting results under
extension or compression of double-twist elastomeric cylinders.
Stretched collagen fibrils exhibit director-field strain straigh-
tening34 that are captured by our double twist elastomer cylinder
model.35 Collagen fibrils under compressive strain along their axis
that show the sequential appearance of swollen domains along the
fibrils36 can be understood in term of a phase coexistence between
a high compression and a low compression state using the same
model.10

Nevertheless, not allowing fibril rotation (torsion) amounts
to an uncontrolled assumption. It is important to understand
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three implications of boundary conditions in this respect. First,
natural biological boundary conditions may not be clamped
against rotation for the life of a fibril. Free rotation effects are
therefore important to understand as a possible origin of
observed developmental phenomena. Second, experimental
boundary conditions may vary between ex vivo studies. Finally,
if fibril ends are not allowed to rotate freely we anticipate that
the resulting torque would couple with fibril shape to lead
to visible supercoiling – i.e. helical distortions of the fibril
shape.31

To understand the potential roles of fibril torsion on the
mechanical properties of collagen fibrils, or more generally of
double-twist anisotropic elastomeric cylinders, we will study
freely rotating (unclamped) fibrils under strain. This will deter-
mine the equilibrium fibril torsion vs. strain. We also investi-
gate clamped boundary conditions, where a specific non-zero
torsion is imposed. Since we use a general elastomer free-
energy, we can also investigate thermodynamically metastable
mechanical equilibria related to torsion. Finally, we will
describe how our results may manifest themselves in both
in vivo and ex vivo studies.

2 Elastomeric double-twist model

Consider a liquid-crystal elastomer with a molecular director
field n0 and anisotropic Gaussian cross-links with density r.
When this system is subject to a deformation, the entropic free
energy density due to the cross-links is ref. 3

f ¼ m
2
Tr ‘

0
lT‘�1l

� �
: (1)

Here ‘
0

and ‘ are tensors describing the initial and post-

deformation orientations of the molecules and cross-links,
l is the deformation-gradient tensor describing the deforma-

tion, m = rkBT is the shear modulus (r is the molecular density,
kB is Boltzmann’s constant, and T is the temperature). The
tensors ‘

0
and ‘ are functions of the pre- and post-strain

molecular twist fields, and thus implicitly dependent on posi-
tion; l may also be position-dependent.

We are particularly interested in cylinders of unstrained
anisotropic elastomers with a double-twist director field

n0ðrÞ ¼ � sinc0ðrÞ/̂þ cosc0ðrÞẑ; (2)

which is found in collagen fibrils10,35 or keratin macrofibrils11

(Fig. 1). The radius-dependent c0(r) is the initial twist angle
function, which describes the angle of molecules with respect
to the cylinder axis (ẑ) before any mechanical strain is imposed.
We assume azimuthal and translational symmetry, i.e. that the
molecular tilt c with respect to the cylinder axis does not
depend on the azimuthal angle f or on the axial coordinate z.

For a cylindrical geometry, we will use the dimensionless
radius r = r̃/R̃ in terms of the dimensioned radial coordinate r̃
and radius R̃. We will also use the dimensionless axial coordi-
nate z = z̃/L̃ in terms of the dimensioned axial coordinate z̃ and
length L̃. Our dimensionless coordinates are then r A [0,1],

z A [0,1], and an azimuthal angle fA [0,2p]. Our dimensionless
radius R = 1, which we will use as appropriate for clarity.
The total free energy is the volume integral of the density,
F ¼

Ð
Vf dV.

The tensor ‘
0
¼ dþ ðz� 1Þn0 � n0 captures the initial orien-

tations of molecules and cross-links in terms of the initial
molecular director field n0, and the anisotropy parameter
z ¼ ‘k

�
‘?. d denotes the unit tensor, and # denotes a tensor

product. z is the ratio between the projected length of cross-
links in the directions parallel and perpendicular to n0.
This gives

‘
0
¼

1 0 0

0 1þ ðz� 1Þ sin2 c0 ð1� zÞ sinc cosc0

0 ð1� zÞ sinc0 cosc0 1þ ðz� 1Þ cos2 c0

0
BBB@

1
CCCA: (3)

For the post-strain director field, we again assume a double-

twist structure: nðrÞ ¼ � sincðrÞ/̂þ coscðrÞẑ. The post-strain
structure of the elastomer is described by ‘ ¼ dþ ðz� 1Þn� n,

which leads to

‘�1 ¼

1 0 0

0 1þ ðz�1 � 1Þ sin2 c ð1� z�1Þ sinc cosc

0 ð1� z�1Þ sinc cosc 1þ ðz�1 � 1Þ cos2 c

0
BBB@

1
CCCA: (4)

We consider an extension of the elastomer cylinder by a
factor of l, with extensional strain e � l � 1, and impose
incompressibility so that we have a radial compression by a
factor of l�1/2. We also allow for a torsion deformation, where
the two ends of the fibril are rotated around the z-axis with
respect to each other by an angle tL. Since the rotation
along the cylinder will depend linearly on z, t is therefore a

Fig. 1 (A) Cutaway view of a double-twist cylinder, with the molecular
director field indicated by curved blue lines. The three orthogonal direc-
tions in cylindrical coordinates, r̂, /̂, and ẑ are indicated. The twist angle
c(r), which is the angle of molecular tilt with respect to the axis, depends
on the radial distance within the cylinder – but is independent of f or z.
Adapted from ref. 10. (B) Schematic illustrating the axial deformation we
consider. Seen from the side (above), the length is extended by a factor of l
while the radius narrows due to incompressibility; (below) seen from the
top, one end of the cylinder rotates by an angle tL relative to the other end.
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torsion-gradient. We assume that l and t are independent of
position. Mathematically, we have

z - lz, (5a)

r - l�1/2r, (5b)

f - f + tz. (5c)

From Fig. 1, we note that a positive t will act to untwist
(straighten) the molecular field lines for a positive angle func-
tion c(r). We evaluate the deformation gradient tensor l in
Appendix A using.32 The resulting tensor is

l ¼
l�1=2 0 0

0 l�1=2 tl�1=2r

0 0 l

0
B@

1
CA: (6)

(This also agrees with the deformation gradient tensor used by
Giudici and Biggins.31) Using the tensors ‘

0
, ‘ and l, the free

energy density f is given by

8zl
m
f ¼ 1þl3þ z 6þ zþð2þ zÞl3

� �
þ r2ð1þ zÞ2t2

þ2ð�1þ zÞsin½2c0�

� �rð1þ zÞt� rð�1þ zÞtcos½2c��ð�1þ zÞl3=2 sin½2c�
� �

þ �1þ z2
� �

1�l3þ r2t2
� �

cos½2c�þ2rl3=2tsin½2c�
� �

þ cos½2c0�
h
�1þ z2
� �

�1þl3þ r2t2
� �

þð�1þ zÞ2

� � 1þl3� r2t2
� �

cos½2c�þ2rl3=2tsin½2c�
� �i

:

(7)

We consider two different deformations: either an imposed
torsion gradient t corresponding to fibril ends that are
‘‘clamped’’ at a fixed rotation, or an equilibrium torsion
gradient teq corresponding to fibril ends that can freely rotate.
In both cases the extension factor l is fixed, but the post-strain
twist angle function c(r) is free to vary. In the first case, we
must simply determine the post-strain twist angle function
which minimizes the total free energy for a given t, by solving
qF/qc(r) = 0. In the second case we must simultaneously
solve for the c(r) and teq which satisfy both qF/qc(r) = 0 and
qF/qt|teq

= 0. With azimuthal and translational symmetry, we

have F ¼ 2p
Ð 1
0drrf .

3 Equilibrium with torsion
3.1 Self-consistent equations

For a fixed torsion gradient t, we can locally minimize f with
respect to the post-strain twist-angle function c(r). For z = 1, the
elastomer is isotropic and qf/qt directly determines t = 0. For
anisotropic elastomers, with za 1, setting qf/qc = 0 and solving
for c(r) yields eqn (8), where the r-dependence of the function
c0(r) is omitted for simplicity. When t = 0, this reduces to the
expression for c(r) reported in ref. 10. When t is allowed to vary
freely, the equilibrium value teq which locally minimizes the
free energy is given by eqn (9).

In practice the total free energy F must be used to distin-
guish local minima from maxima. To obtain good initial
guesses for fast numerical calculation of extrema of F, we use
an analytic approximation to the free energy (7) for small c and
t – see Appendix B. This 6th order approximation also allows us
to quickly determine whether a given extrema corresponds to a
local minimum or maximum of F. We then numerically explore
the full F as a function of t by computing c using eqn (8) then
computing F by integrating eqn (7).

Previous modelling work indicates that the double-twist
angle has non-trivial radial dependence that depends on
the equilibrium vs. non-equilibrium conditions of fibrillo-
genesis.9,37 The above equations are valid for general c(r), but
for simplicity we restrict our attention to two cases that are
often used as models of double-twist structure and which are
reasonable approximations of more detailed models.9,37

The first is a linear twist angle with radius, c(r) = rc(R) – where
r is measured in units of the fibril radius (shown in the rest of
the results). The second is a constant twist angle with
radius, c(r) = c(R) (shown in Appendix C). Both the constant
and linear twist models lead to qualitatively similar results,
indicating a degree of robustness of our results to the details
of c(r). However, significant quantitative differences also indi-
cate that detailed results will depend upon the specific
c(r) used.

In order to make quantitative comparisons with biological
collagen fibrils, we approximate tendon fibrils as having con-
stant c0(r) with c0(R) E 0.1, and corneal fibrils as having linear
c0(r) with c0(R) E 0.3.9 Based on previous work, we expect
z A [1.1,1.3].35

3.2 Zero-strain limit

Our anisotropic double-twist elastomer displays unexpectedly
complex behaviour. We expect a vanishing torsion gradient t
for vanishing strains (with l - 1 and strain e � l � 1 - 0).

cðrÞ ¼ 1

2
cot�1

ðzþ 1Þ l3 � t2r2 � 1
� �

þ ðz� 1Þ l3 � t2r2 þ 1
� �

cosð2c0Þ þ 2ðz� 1Þtr sinð2c0Þ
2l3=2 ðz� 1Þ sinð2c0Þ � ðzþ 1Þtr� ðz� 1Þtr cosð2c0Þ½ �

	 

; (8)

teq ¼
Ð 1
0drr

2 z2 � 1
� �

sinð2c0Þ � l3=2 sinð2cÞ
� �

þ ðz� 1Þ2 sinð2c0Þ cosð2cÞ � l3=2 cosð2c0Þ sinð2cÞ
� �� �

Ð 1
0drr

3 ðzþ 1Þ2 þ z2 � 1ð Þ cosð2c0Þ þ cosð2cÞ½ � þ ðz� 1Þ2 cosð2c0Þ cosð2cÞ½ �
: (9)
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However, at small strains we find multiple self-consistent
solutions to eqn (8) and (9). To understand why, it is useful
to examine the free energy F as a function of t – as shown in
Fig. 2A for l = 1. We observe a double-well form for the free
energy, with the expected t = 0 minimum but also a second
local minimum at larger t, separated from the t = 0 equilibrium
by a free energy barrier. The accuracy of our 6th order expan-
sion of F in t and c (see Appendix B) is illustrated by the grey
lines in Fig. 2, where we see only small deviations from the full
F results even at c0(R) = 0.3.

The non-zero torsion minimum of F represents an alterna-
tive stable equilibrium. How large is the barrier between
minima in units of kBT? In Fig. 2A, the free energy is in units
of mV. With Young’s modulus Y E 3 m (see below), we obtain a

barrier height of approximately 25kBT for c0(R) = 0.1 with a
cylinder of length L̃ = 10 mm and radius R̃ = 100 nm and an
elastic modulus Y = 1 MPa typical of soft elastomers. For stiffer
systems such as collagen14 the barriers are much larger.
Because of the large barriers, we expect that the mechanical
history – including the initial conditions – of elasto-
meric systems would determine which stable branch would
be observed.

3.3 Bifurcation under strain

When the fibril is sufficiently strained, the values of t corres-
ponding to the two minima shown in Fig. 2A converge. Fig. 2B
shows the stable (corresponding to local minima of F) and
unstable (local maxima) values of t as the fibril extension factor
l is increased. The small-t minimum and the local maximum
collide and vanish at a critical lc in a saddle-node bifurcation,
leaving only a large-t solution as a global free energy minimum
at larger l. Despite their significant differences in free energy
landscapes (see Appendix C) constant and linear twist fibrils
exhibit qualitatively similar bifurcation behaviour of teq under
extension.

In Fig. 3 we show the critical strain ec � lc � 1 (in percent),
above which only the large-t equilibrium exists, for different
values of c0(R) (assuming a linear twist function) and z. As in
Fig. 2B, increasing c0(R) leads to a higher critical strain.
At higher c0(R) the cross-link anisotropy z significantly impacts
the critical strain. For example, at c0(R) = 0.3, roughly corres-
ponding to corneal fibrils,38 varying z from 1.1 to 1.5 increases
ec three-fold, suggesting that increased cross-link anisotropy
leads to fibrils that are better protected from torsional instability.
Conversely, at smaller surface-twist c0(R) corresponding to tendon
fibrils (with c0(R) E 0.1) the bifurcation occurs at very small strain
values (ec t 0.1%) for all values of z.Fig. 2 (A) Free energy F in units of mV vs. the torsion gradient t at l = 1

(zero-strain) for linear twist functions c0(r) = rc0(R), with c0(R) indicated by
the legend. (B) Stable (solid lines, corresponding to local minima of F) and
unstable (dotted lines, corresponding to local maxima of F) solutions for t
as a function of extension factor l for linear twist functions with c0(R) as
indicated. The lower stable and unstable solutions merge as l increases,
leaving only the upper stable (equilibrium) solution at high strains. Both:
Coloured curves show solutions to the full eqn (7) and (8), while light grey
curves show the 6th order approximation (21). We take z = 1.3.

Fig. 3 The critical strain, ec � lc � 1, in percent for a range of values of z
and c0(R) for linear initial twist functions. For strains e 4 ec, only a single
high-torsion stable solution exists. For e o ec two stable and one unstable
solutions exist, leading to a saddle-node bifurcation at ec.
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3.4 Twist function

At larger l (where e 4 ec), where there is only one stable
solution, we can simply expand eqn (8) and (9) to first order
in c0, c, and t:

tsm ¼
4ðz� 1Þ

z

ð1
0

~r2 c0ð~rÞ � l3=2cð~rÞ
h i

d~r; (10)

and

csm ¼
l3=2

zl3 � 1
ðz� 1Þc0ðrÞ � ztr½ �; (11)

where ‘sm’ indicates small-angle.
We then solve these linear equations to obtain self-

consistent (‘sc’) solutions for c(r) and t:

tsc ¼
4ðz� 1Þ

z

ð1
0

~r2c0ð~rÞd~r; (12)

together with

cscðrÞ ¼
l3=2ðz� 1Þ
zl3 � 1

c0ðrÞ � 4r

ð1
0

~r2c0ð~rÞd~r

� �
: (13)

We see that csc(r) is linear in r for linear or constant c0(r).
We also have that

Ð
~r2cscð~rÞd~r ¼ 0. As a result, for linear twist

with c0(r) = rc0(R), then csc(r) = 0 – i.e. any initial linear twist is
exactly unwound at higher strain. For constant twist, with c0(r)
= c0(R), then c p c0(R)(1 � 4r/3) – so that surface twist has the
opposite sign from c0 for e 4 ec!

More generally, Fig. 4 indicates how the surface twist c(R)
varies under strain; the surface twist exhibits the same bifurca-
tion behaviour shown in Fig. 2B. The symmetry about c(R) = 0
is broken by the choice of initial twist function c0. The inset

indicates that c(R) decreases approximately linearly with tor-
sion t, echoing the small t limit of eqn (11).

3.5 Mechanical properties

Torsion significantly changes the mechanical properties of
elastomers. Consider fibrils with clamped ends such that a
fixed initial torsion gradient t is maintained during an exten-
sion. Fig. 5A shows the resulting Young’s modulus measured
when such a fibril is strained – where Y/m = q2(F/mV)/ql2 at l = 1.
For both constant and linear twist angle functions, pre-torsion
of the fibril can significantly alter the Young’s modulus. For
example, for a constant twist of 0.1 rad, roughly corresponding
to tendon fibrils, varying the imposed torsion gradient t from
�0.1 to 0.1 results in an almost 50% difference in measured
Young’s modulus.

Fig. 4 Stable (outer branches) solutions for c as a function of extension
factor l for initial linear twist functions with c0(R) = 0.1, c0(R) = 0.2, and
c0(R) = 0.3. Note that when the extensional strain exceeds ec the mole-
cular twist is small (c(r) E 0). Inset: Corresponding plots of c(R) as a
function of t plotted parametrically by varying l along either stable branch.
z = 1.3.

Fig. 5 (A) The Young’s Modulus Y/m = q2(F/mV)/ql2 at l = 1 as a function of
clamped t for different linear twist angle functions. Horizontal lines show
the Young’s modulus when boundaries are unclamped and thus t = teq

on the lower and upper branches (identical, thin lines). (B) Stress (s =
q(F/mV)/ql) vs. strain (l = 1 + e) curves for either clamped ends (t = 0), or
unclamped ends (t = teq), indicated by thin dashed lines for the lower
branch (t = teq

�) and thick dotted lines for the upper branch (t = teq
+) –

i.e. for (l o lc). The twist function c0(r) is linear. z = 1.3.
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The effects of allowing ends to freely rotate are even more
dramatic. The thin horizontal lines in Fig. 5A indicate the
Young’s modulus of a fibril with unclamped boundary condi-
tions (with t = 0 at l = 1, following the upper or lower stable
branch in Fig. 2B). Interestingly, the Young’s modulus are the
same for the two stable branches. The Young’s modulus of
unclamped fibrils falls far below the Young’s modulus of fibrils
with clamped ends, by a factor of 2–3 depending on the initial
torsion gradient and initial twist angle function.

The bifurcation at lc also affects the mechanical properties.
This is illustrated in Fig. 5B, which shows the stress–strain
curves of fibrils with freely rotating boundary conditions
(t = teq) with dashed lines. Fibrils clamped with t = 0 are shown
for reference with solid lines. At l = lc we see an abrupt
stiffening of the fibril (note that the Young’s modulus is the
slope Y/m = qs/ql). While the torsion dependence of mechanical
properties is also seen with constant twist fibrils, the details
differ significantly (see Fig. 9 in Appendix C).

4 Discussion

We have explored the effects of free torsion on the structural
and mechanical properties of strained double twist elastomeric
cylinders. Allowing for freely-rotating ends leads to qualitatively
different behavior from fixed ends. For small extensional
strains there are two stable torsion values. At a critical strain
the system undergoes a bifurcation, where the torsion and twist
angle both change discontinuously. Above the critical strain
only a single stable torsion value is observed.

Torsion, twist angles, and mechanical properties all change
discontinuously at the critical strain, but they otherwise con-
tinuously depend on strain – particularly below the critical
strain. To provide some perspective on the expected scale of
physical effects, we will focus our attention on collagen fibrils.

The torsion gradients t appear small, but can correspond to
large relative twist angles between fibril ends since we measure
length in radial units so Df = tL̃/R̃. For a tendon collagen fibril
of radius R̃ = 100 nm and length L̃ = 10 mm we have L̃/R̃ E 100.
A torsion gradient of t = 0.02 (corresponding to a tendon fibril
with linear twist and c(R) = 0.1 under a 0.1% strain) then leads
to an end-to-end rotation of \1001!

Freely-rotating ends also lead to different mechanical prop-
erties. As shown in Fig. 5A, fibrils with freely-rotating ends
can have 2–3 times smaller Young’s Modulus than fibrils
with clamped ends. The stress–strain curves of fibrils with
freely-rotating ends (Fig. 5B) also shows much lower stresses
at small strains, a phenomenon similar to the ‘‘toe region’’ seen
in recent single-fibril studies.39

Such dramatic physical effects would provide a window into
the internal structure of collagen fibrils, particularly the mag-
nitude (c0(R), see Fig. 2–5) and functional form (c0(r), compare
with Fig. 6–9) of the double-twist function. Free-rotation of
single fibrils in vitro may be possible with magnetic-bead
mechanical coupling.39 Our freely-rotating equilibrium results
should apply if either fibril end is freely-rotating.

While we are not aware of existing experimental studies that
have allowed free rotation of collagen fibrils, the Young’s
modulus is very sensitive to the magnitude and sign of any
pre-existing torsion gradient. This may explain some of the
variability of Young’s modulus reported for tensile tests of
single fibrils in vitro where fibrils are glued in the dry state
and rehydrated before testing.40,41 If the degree of torsion is
uncontrolled and variable due to the preparation process, this
could lead to a 25% variability of the measured Young’s
modulus (see Fig. 5).

Bundles of fibrils both ex vivo or in vivo will have extensive
interfibrillar bonds and cross-links that will inhibit free fibril
rotation. Any fibril-level torque would be aggregated via inter-
fibrillar linkages42 and lead to shape effects at higher hierarch-
ical levels. We expect torque from inhibited fibril torsion to
couple to fibril shape26–28 and also to higher hierarchical
structures such as fibers,21,24,25 wave-like structures,29 or
crimps.30 Indeed, torsion effects of fascicles are observed under
tension. As an example, 10 mm samples from mouse tendon
fascicles rotated an average of 511 under 1% strain.21

Torque-shape effects could vary between different develop-
mental stages. Block-face electron microscopy reconstruction of
mouse tail tendon sections26 shows changing helical shapes of
single fibrils during development. In the embryo (day 15),
individual fibrils have no clear helical pitch. At birth, each
fibril follows a helical path with a contour length of 17 microns
per turn with radius R̃ E 23 nm. After 6 weeks, fibrils follow an
helical path with a contour length of 100 microns per turn with
radius R̃ E 80 nm. Under the simplifying assumption that the
shape distortion is comparable to the frustrated torsion, this
corresponds to t increasing from 0 (embryonic) to 0.009 at birth
and then decreasing to 0.005 after 6 weeks. Mature tendon
fibrils have an estimated c0(R) E 0.1,43 so these results are
consistent with fibrils being strained by less than 0.1% at birth.
Our model then predicts that the molecular tilt at the surface
c0(R) will be approximately linear in strain – so half the value at
birth compared to after 6 weeks (see Fig. 4 inset).

While we are inclined to assume that fibrils are formed with
zero torsion t, transient strains experienced during develop-
ment could drive fibrils through the bifurcation to high-torsion
behavior – though presumably not once interfibrillar connec-
tions are made that would fix t. For the small double-twists of
tendon fibrils with c0(R) E 0.1, we would expect a very small
critical strain ec (see Fig. 3) – so both stable and metastable
bifurcations are plausible. The timing of applied strain during
development is therefore important. For the larger double-
twists of corneal fibrils with c0(R) E 0.3 it seems possible that
the critical bifurcation could be avoided during development.

Experimental studies are needed to explore torsion effects
for both single fibrils and for assemblies of fibrils at the tissue
level. The relationship between torsion, torque, and shape
effects needs to be better explored for collagen – as it can be
complex.44,45 Single-fibril experiments with defined non-zero
torsion should show strong mechanical effects even without
any double-twist (see Fig. 5A). Allowing freely-rotating ends,
perhaps with magnetic bead attachments,39 would lead to more
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dramatic effects. Fibrils with larger twist angles c0(R) should
show large torsion effects (or torsion-induced shape effects)
that exhibit hysteresis around the critical strain. Tissue experi-
ments may be easier to accomplish (see e.g. ref. 21), but may be
harder to interpret if the underlying fibrils have a distribution
of initial torsions. Isolated in vitro assembled fibrils with a
defined mechanical history would provide the most direct test
of our results.

The recent theoretical study of Giudici and Biggins31

explored the torsion/extension coupling of fibers through a
nematic/isotropic phase-transition. Our work complements
theirs, since we work entirely within a liquid-crystalline ordered
phase and explore mechanical effects. Using finite-element
methods (FEM), they demonstrated that frustrated torsion
can have a strong effect on fiber shape. Applying similar FEM
in our context would provide greater insight into the coupling
of single fibril torque into shape effects of both fibrils and
tissue.

Finally, in this work we have only considered extensional
strains. Previous work has found rich behaviour under compres-
sion for fibrils with clamped ends (t = 0) – both experimentally36

and theoretically.10 We expect that compressed fibrils with free
torsion could exhibit even more complex behavior.
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Appendix

A The deformation gradient tensor

The most general deformation possible without breaking azi-
muthal symmetry is given by

z - a(r,z), (14a)

r - g(r,z), and (14b)

f - f + Df(r,z). (14c)

This allows for e.g. inhomogeneities in z or r. We use this
deformation to derive the general deformation gradient tensor
in a cylindrical geometry.

Following ref. 32, in curvilinear coordinates the deformation
gradient tensor can be written as

l ¼ rv

¼
X3

j;k;m;d¼1

@vk

@Xj
þ vdGk

dm

@xm

@Xj

	 

gkðxÞ � GjðXÞ;

(15)

where the vectors X and v describe the position vector in the
original and deformed states, respectively:

X = rer + zez (16a)

v = g(r,z)er + a(r,z)ez. (16b)

We also have

G(X) = er + ef/r + ez (17a)

g(x) = er + g(r,z)ef + ez. (17b)

The indices 1, 2, and 3 denote the r, f and z coordinates
respectively, and Gk

dm are the Christoffel symbols for cylindrical
geometry, only three of which are non-zero:

G12
2 = G21

2 = 1/r, (18a)

G22
1 = �r. (18b)

The components X j, xm, and vk in eqn (15) are

X1 = r, (19a)

X2 = f, (19b)

X3 = z, (19c)

x1 = g(r,z), (19d)

x2 = f + Df(r,z), (19e)

x3 = a(r,z), (19f)

v1 = g(r,z), (19g)

v2 = 0, (19h)

v3 = a(r,z). (19i)

We can now proceed to evaluate the deformation gradient
tensor. This is tedious but straightforward, yielding

l ¼

gr 0 gz

gDfr g=r gDfz

ar 0 az

0
BBB@

1
CCCA; (20)

where the subscripts indicate partial derivatives, e.g. gr � qg/qr.
Taking the deformation specified in the text (eqn (5)),

we have g(r,z) = r/l1/2 and so gr = l�1/2, Df(r,z) = tz and so
Dfz = t, and a(r,z) = lz and so az = l – with gz = Dfr = ar = 0. This
then leads to eqn (6). This final result is consistent with that
obtained by Ogden,33 p. 113, and was also used by Giudici and
Biggins.31

B 6th order approximation

In the text and figures we made use of a 6th order approxi-
mation for the free energy. This is computed by expanding the
free energy density (7) to 6th order simultaneously in c0, c, and
t (holding these three quantities proportional to each other).
This procedure yields an unwieldy but analytical expression for
the free energy density, which is used to compute thin grey
lines in Fig. 2, and provides an initial guess to speed up
numerical computation of the full free energy landscape.
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The 6th order expansion for linear twist functions c0(r) = cR
0

r is

F ¼
a1tþ

a2

2
t2 þ a3

3
t3 þ a4

4
t4 þ a5

5
t5 þ a6

6
t6

3 zl3 � 1ð Þ3
: (21)

The coefficients are

In a manner analogous to that described above, we also derive a
separate small-angle expansion for constant twist angle func-
tions c0(r) = cR

0, which is then used to compute the thin grey
lines in Fig. 6. This expansion (not shown) is similarly unwieldy
but easily derivable from eqn (7).

C Constant twist results w0(r) = w0(R)

While in the main text we focused on primarily on linear initial
twist angle functions, constant twist angle functions are also of
significant interest, being thought to roughly correspond to the
biologically-relevant example of tendon collagen fibrils.

Fig. 6A shows the free energy landscape as a function of t at
zero strain for constant twist angle functions. While the free
energy landscape has a double-well shape as in the linear
twist case (Fig. 2), the two minima are highly asymmetric
for constant twist functions. Fig. 6B then shows the same
three-branched bifurcation of t as strain is increased; this is

qualitatively the same as the behaviour seen for linear twist in
Fig. 2B.

Fig. 7 shows the critical strain as a function of initial surface
twist c0(R) and anisotropy z for constant twist. We see
no qualitative differences with respect to the linear case
(Fig. 3), and only small quantitative differences.

Fig. 8 shows the strained twist angle c as a function of strain
for constant twist. While the behaviour is qualitatively similar
to that seen for linear twist in the main text (Fig. 4), the
bifurcation for constant twist involves a much larger jump in
c when a fibril on the upper branch reaches the critical strain.

Finally, Fig. 9 shows the mechanical properties for constant
twist. Unlike the case of linear twist (Fig. 5), for constant twist
we see significant differences between the mechanical proper-
ties of the upper and lower stable branches. While the Young’s
modulus of the lower branch is still B50% lower for the lower
branch with unclamped boundaries than for clamped bound-
aries, Fig. 9A shows that the upper branch lies in between,
roughly B50% stiffer than the lower branch. Fig. 9B shows
even starker differences for the stress–strain curves. While the
lower branch at constant twist (dashed lines) exhibits qualita-
tively the same change change in Young’s modulus at the
critical strain as seen for linear twist, the Young’s modulus of
the upper branch (dotted lines) remains roughly constant
across the critical strain.

a1¼
1

60l
ðz�1Þ l3�1

� �
cR
0 �90 zl3�1

� �2þ40 cR
0

� �2
l3 z z l3þ3

� �
�8

� �
þ3

� �
þ1

� ��

�
3ðcR

0 Þ4 2z4l12þzðzðð67�15zÞz�105Þþ45Þl9þ3ð5ðz�2Þzþ3Þðzð3z�10Þþ5Þl6þðzð15zð3z�7Þþ67Þ�15Þl3þ2
� �

zl3�1ð Þ2

!
;

a2¼
1

4l
6z l3�1
� �

zl3�1
� �2�4ðz�1Þ cR

0

� �2
z2l9þðz�4Þzl6�3ð2ðz�2Þzþ1Þl3�1
� ��

þ
ðz�1Þ cR

0

� �4
l3 z z3l12�z 2z2þ3

� �
l9�45z2þðzðzð30z�119Þþ156Þ�57Þl6þð188�3zðzð15z�76Þþ117ÞÞl3þ102z�67

� �
�30l3þ15

� �
�1

� �
zl3�1ð Þ2

!
;

a3¼
3

2
ðz�1Þ2l2cR

0

cR
0

� �2
z 2ð3�2zÞzl6þð5zð3z�8Þþ21Þl3þ15z�16
� �

þ3
� �

zl3�1ð Þ2
�4z

 !
;

a4¼
1

2
ðz�1Þzl2 4zþ

3ðz�1ÞðcR
0 Þ2 z l3 z l3�15

� �
þ19

� �
�15

� �
þ10

� �
zl3�1ð Þ2

 !
;

a5¼
45ðz�1Þ2z2l2cR

0 zl3þ1
� �

4 zl3�1ð Þ2
;

a6¼�
9ðz�1Þz3l2 zl3þ1

� �
4 zl3�1ð Þ2

:
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Fig. 6 (A) Free energy F as a function of the torsion gradient t at l = 1
(zero-strain) for constant twist functions c0(r) = c0(R). (B) Stable (solid
lines, corresponding to local minima of F) and unstable (dotted lines,
corresponding to local maxima of F) solutions for t as a function of
extension factor l for several different constant initial twist functions.
The lower stable and unstable solutions merge as l increases, leaving only
the upper stable solution at high strains. Both: Coloured curves show
solutions to the full eqn (7) and (8), while light grey curves show the 6th
order approximation. z = 1.3.

Fig. 7 The critical strain, ec = lc � 1, in percent for a range of values of z
and c0(R) for constant initial twist functions. When the extensional strain
exceeds ec the molecular twist is small with c(r) E 0.

Fig. 8 Stable (outer branches) solutions for c as a function of extension
factor l for initial constant twist functions with c0(R) = 0.1, c0(R) = 0.2, and
c0(R) = 0.3. Dark thick curves show c(R), while lighter, thinner curves show
hc(r)i. Inset: c(R) as a function of t, plotted parametrically for different
values of l. z = 1.3.
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