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ABSTRACT
Counting fluorescence photobleaching steps is commonly used to infer the number n0 of monomeric units of individual oligomeric protein
complexes or misfolded protein aggregates. We present a principled Bayesian approach for counting that incorporates the statistics of photo-
bleaching. Our physics-based prior leads to a simple and efficient numerical scheme for maximum a posteriori probability (MAP) estimates
of the initial fluorophore number n̂0. Our focus here is on using a calibration to precisely estimate n̂0, though our approach can also be used
to calibrate the photophysics. Imaging noise increases with n̂0, while bias is often introduced by temporal averaging. We examine the effects
of fluorophore number n̂0 of the oligomer or aggregate, lifetime photon yield μeff of an individual fluorophore, and exposure time Δt of
each image frame in a time-lapse experiment. We find that, in comparison with standard ratiometric approaches or with a “change-point”
step-counting algorithm, our MAP approach is both more precise and less biased.
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I. INTRODUCTION

Photobleaching of fluorophores can be exploited to deter-
mine the number of macromolecular subunits within immobilized
and isolated complexes or aggregates.1–5 After covalently binding
one fluorophore to each subunit, counting the steps of fluores-
cence bleaching for an individual macromolecule then determines
its number n0 of subunits. When all bleach steps are resolved, the
number of subunits in, e.g., channels,6 membrane receptors,7,8 and
even soluble proteins9 can be determined (see also Ref. 4). Total
internal reflection fluorescence (TIRF) microscopy is normally used
for data acquisition to minimize the background imaging noise.

Typically, to make a precise estimation of the number of steps
n0, first the brightness of a single fluorophore ν is calibrated, then the
calibration is applied to the initial background-subtracted intensity
in a ratiometric approach. There are many approaches to calibrating
fluorophore brightness, including direct measurement of indi-
vidual fluorophores,10,11 power-spectrum analysis of observed
photobleach steps,12,13 fluctuation approaches,14,15 and Bayesian
analysis.16 In contrast, there has been little systematic consideration

of how to best estimate n0, given a precise calibration of fluorophore
brightness ν.

As n0 increases, the noise in the measured intensity from a
given macromolecule with n0 fluorescent labels also increases, since
the variance increases linearly with n0.14,17–19 At the same time, the
duration of the first bleach step of the macromolecule decreases
with n0, since if τ is the average time to bleach a single fluorophore
then with n0 fluorophores, the average time until the first step will
be τ/n0. Both of these effects, increasing noise and initially shorter
intervals between bleach steps, work against precise estimation of
larger n0 even with a calibrated ν. Furthermore, they are interdepen-
dent. Increasing the illumination intensity increases the signal-to-
noise ratio (SNR), but shortens the initial bleaching time. The same
compromise is also seen when longer imaging intervals Δt are used.

A simple estimate of the total photon budget highlights the
problem. Absolute photostability, as characterized by the average
number of photons μ emitted by a molecule before photobleach-
ing, is 105–106 for high-performance fluorophores commonly
used in single-molecule studies.20–22 A typical microscope detec-
tion efficiency of 1%–10% then gives a range of the photon
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yield, i.e., the number of detected photons per fluorophore, of
μeff ≃ 103–105.

If each imaging frame collects a fraction α of the average life-
time photons of a single unbleached fluorophore, then in one frame
the average number of detected photons is ν̃ = αμeff , where the
∼ denotes photon units. The initial intensity of n0 fluorophores is
Ĩ0 ≃ ν̃n0, while Poisson statistics of photon shot-noise indicates that
the standard deviation is σĨ0

=
√
Ĩ0. This then gives σn0 = σĨ0

/ν̃
=
√
n0/ν̃. If we insist on precise counting, we must have σn0 ≲ 1,

i.e., n0 ≲ αμeff , arguing for larger α. However, to resolve the first
bleach step, the duration of each imaging frame should be (much)
shorter than the first bleach step, i.e., ατ ≲ τ/n0 or α ≲ 1/n0, argu-
ing for smaller α. Combining these two requirements limits us to
n0 ≲ √μeff , and indicates that more photostable fluorophores
will allow larger n0 to be precisely counted. For a given μeff , how
should we best compromise α between resolving bleach-steps and
decreasing noise?

For a given α, we may also ask how best to use the intensity
signal and the calibration to determine n0. Directly taking the ratio
of the background-subtracted intensity to the step-size (I0 − a)/ν,
where a is the background intensity, is a naive but straightforward
ratiometric approach. However, this ignores any information after
the first image frame and so is unnecessarily noisy.

Some sort of filtering or time-average can reduce the noise in I0.
Commonly used approaches use step-preserving filters such as the
Chung-Kennedy (CK) filter23 to reduce noise while preserving the
step-structure in the signal. Practically, any filtering or local averag-
ing also requires tunable parameters such as the width of the filtering
window to achieve reliable results (see, e.g., Refs. 7 and 12). Such
tunable parameters must be optimized for every experiment, and so
limit throughput. Any local averaging or filtering will also blur out
closely separated steps.24 This results in a systematic underestimate
(bias) of the total steps with large numbers of steps.25

Since filtering loses information, and so does ignoring data
after the first image frame, we could instead try to use all
of the available timeseries photobleach data to determine n0.26

Since the data are structured, with strong temporal correlations
within and between steps, Bayesian inference of n0 is appropri-
ate.27 With a physically based model and parameters, the likeli-
hood function of the Bayes’ theorem is combined with previous
knowledge about parameter values or inter-relationships through
prior distributions to produce a posterior distribution.28 Recently,
Bayesian approaches have been used in fitting photobleach curves,
either to account for incomplete labeling29 or to calibrate the
size of photobleach steps.16 Bayesian approaches have also been
used to infer state transitions in systems with small numbers of
states.30

Ideally, the Bayesian model and priors capture all of the physics
that produced the data. In that case, with sufficient data, inferred
parameters will converge toward the real physical parameters.27

In practice, simpler ad hoc priors are often used to approximate
and simplify the posterior.29 For example, Tsekouras et al. use an
ad hoc prior to limit biases of the number of inferred photobleach-
ing steps.16 Without their prior, they systematically over-estimated
the number of bleach steps. What does a principled physical prior
look like and how would it behave, both in terms of computational
convenience and in terms of bias?

In an alternative approach, directly counting photobleaching
steps can be done without any calibration and with no physical
priors. For sufficiently small noise, direct counting can be done
visually.1 More generally, algorithms can be used to automatically
identify and count steps in the data. These “change-point” (CP) algo-
rithms assume only piecewise constant data (see, e.g., Refs. 31–34)
and have been applied to count RNA, DNA, and protein molecules
in biological complexes.4,8,35 However, accurate counting beyond 10
photobleach steps remains a challenge using CP methods.35

In this paper, we present a Bayesian approach using a principled
prior that captures the physics of photobleaching. With our princi-
pled prior, we find that maximum a posteriori probability (MAP)
estimation36 is both mathematically transparent and computation-
ally tractable. We can use our approach to either quantify the initial
number of fluorophores (n̂0) within photobleach traces with known
photophysics or calibrate the photophysics with a small number
of fluorophores. To illustrate calibration, we calibrate our model
parameters with experimental data. We then test our approach by
fitting ensembles of simulated photobleach data. We investigate
the effects of n̂0, camera exposure time, and the photon yield of
the fluorophore. We compare our MAP approach with both naive
and filtered ratiometric approaches, as well as with a change-point
algorithm that does not require calibration.

II. METHODS
A. Intensity model

For a constant camera exposure time Δt = ατ, the intensity
measured in each frame i ∈ {0, . . . ,N − 1} is composed of the num-
ber of unbleached fluorophores ni, the brightness factor (step-size)
per fluorophore ν, the background illumination intensity a, and a
Gaussian noise ξi (with zero-mean, ⟨ξi⟩ = 0),

Ii = νni + a + ξi. (1)

We have approximated the Poisson shot-noise of individual
photons17 with a Gaussian, which is necessary for our subsequent
analysis and is reasonable when the number of photons per interval
ν̃ ≳ 20. The variance in the noise, σ2

i , is dependent upon the num-
ber of fluorophores present at a given time-step with a shot-noise
component σ2

1 per fluorophore and an additional term accounting
for the background fluorescence noise and the detector’s dark noise
σ2

0 . Since variances are additive, the total variance is17,19

σ2
i = niσ2

1 + σ2
0 . (2)

Our noise model captures background and dark noise (through
σ2

0 ) and shot-noise due to fluorophores (through σ2
1 ), but does not

include pixel-by-pixel camera details (see, e.g., Ref. 37). Random
fluctuations of individual fluorophore brightness due to environ-
mental or internal degrees of freedom that are rapid with respect
to τ are also captured by σ2

1 . We have used arbitrary intensity units,
rather than photon counts, in Eqs. (1) and (2), so that σ1 and ν are
independent parameters.

B. Simulating bleach traces
For a given initial number of fluorophores n̂0 and flu-

orophore lifetime τ, Gillespie’s stochastic simulation algorithm
(SSA)38 was used to generate bleach times for each simulated trace.

J. Chem. Phys. 152, 024110 (2020); doi: 10.1063/1.5132957 152, 024110-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 1. Illustrative simulated bleach curves (blue lines) each starting with n̂0 = 25 fluorophores. Shown is intensity I vs time t. In each subplot, the thicker red line shows the
noise-free steps, the thinner black line our Bayesian MAP fit, and the inset shows the residuals (with respect to the intensity in black points, and with respect to the noise-free
intensity in red lines) in units of the fluorophore brightness ν. Each curve has N = 3000 data points with Δt = 0.3 s timesteps. Default parameters are used: background signal
a = 1000, per fluorophore noise variance σ2

1 = 900, background noise variance σ2
0 = 1600, and nonbleach probability per time-step q = 0.998. (a) Low-noise trace with

ν = 400. Bleach steps in the raw intensity are readily identifiable by eye at later times, but not at the earliest times. (b) High-noise trace with ν = 50. Bleach steps in the raw
intensity cannot be identified by eye with any certainty.

Using these bleach times, the true set of fluorophore counts {n̂i}
≡ {n̂0, n̂1, . . . , n̂N−1} was determined. Note that we use {n̂i} to
indicate the set of ground-truth values that will be fit with {ni}.

Then, for each simulated trace, the set of measured intensi-
ties {Ii} was constructed from our model [Eq. (1)] with random
Gaussian noise according to Eq. (2). Since bleach times did not
coincide with exposure intervals, we used time-average fluorophore
counts within each exposure and the corresponding variances. Illus-
trative noise-free steps (red lines) and stochastic traces (blue lines)
are shown in Fig. 1.

C. Bayesian model parameters
Bayesian inference uses Bayes’ theorem,

P(θ∣D) = P(D∣θ)P(θ)
P(D) , (3)

to fit probabilistic models to data.27 The posterior distribution
P(θ|D) embodies how well the set of model parameters {θ} describes
the measured data {D}. The likelihood P(D|θ)—typically used in
traditional maximum likelihood estimation—is a measure of how
well the data fit the model parameter values. [We ignore the “evi-
dence,” P(D), since it is a constant normalization factor that does
not affect our results.] The priors over the model parameters, P(θ),
are commonly used to capture previous measurements or beliefs,
but can also capture physical relationships expected between model
parameters.

The likelihood follows directly from our intensity model
[Eqs. (1) and (2)] because of the independence of the Gaussian noise
between the frames. We have simply that

P(D∣θ) =
N−1

∏
i=0

1√
2πσ2

i

e−(Ii−νni−a)
2/(2σ2

i ), (4)

where the product is over the N frames of the photobleach trace, and
θ = {{ni}, ν, a, q, σ2

1 , σ2
0} is the set of parameters for that trace. The

inferred sets of numbers of fluorophores present in all of the time

steps {ni} ≡ {n0,n1, . . . ,nN−1} are also model parameters—they
are inferred from the data D = {Ii}. However, while the parame-
ters {ν, a, σ2

0 , σ2
1}, which we call the “photophysics,” are assumed to

be the same between the traces, the steps {ni} are random and so
will be different in every trace. Since the bleach rate can depend on
the local environment of a fluorophore,39,40 we also reconsider q for
each trace. The survival probability that a given fluorophore has not
bleached after Δt is

q = e−Δt/τ , (5)

where τ is the photobleach lifetime of a single fluorophore.

D. Bayesian prior
An important feature of our approach is our physically moti-

vated prior over the number of fluorophores present at every time-
step, i.e., the set of counts {ni} over frames (exposures) indexed by
i. From one frame to the next, the number of active fluorophores
present within each frame is given by the joint binomial distribution
with the probability of not bleaching, q.14 This presumes that pho-
tobleaching of each fluorophore is independent of the others. When
all frames are accounted for, we have the prior

P({ni}) =
N−1

∏
i=1

ni−1!
ni!(ni−1 − ni)!

qni(1 − q)ni−1−ni . (6)

Since q enters into the prior it is called a “hyperparameter,” but
in our case, it is a physical parameter that must be inferred from
the data. Our prior naturally accounts for the probability of observ-
ing shorter steps with larger number of fluorophores. As part of
the prior, we also enforce monotonic decay in the number of
fluorophores.

Additional priors can be developed to guide convergence and
constrain other parameter values. For example, with known photo-
physics and background we impose fixed (delta-distributed) values
of {ν, a, σ2

0 , σ2
1}. To infer these parameters from experimental cali-

bration curves, we add uninformed (i.e., flat or uniform) priors to
aid numerical convergence.
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E. Maximum a posteriori probability
(MAP) estimation

We found that maximum a posteriori probability (MAP) esti-
mation gave simple, reliable, and computationally efficient results.
Simply, MAP determines parameter values θMAP that maximize the
posterior for a given data trace,28

θMAP = arg max
θ

P(θ∣D).

For computational convenience, the log-posterior was used
L ≡ ln P(θ|D).

F. Determining bleach step locations
Determining the optimal set of bleach steps is nontrivial

because {ni} are integer valued and there are many possible discrete
configurations. For a given initial number of fluorophores, n0, and
number of data points, N, the number of possible combinations of
bleach step locations are

(n0 + N − 1
n0

) = (n0 + N − 1)!
n0!(N − 1)! . (7)

This makes brute-force global optimization computationally
impractical for n0 ≫ 1.

We also found (see the supplementary material, Fig. S1) that
the log-posterior is rough when simultaneously optimizing all of
the model parameters when n0 > 1, so that numerical conver-
gence to the global MAP is not guaranteed. There are typically
more than 1000 adjustable parameters, depending on the size of
the dataset: with the photophysics, background, nonbleach prob-
ability, and the number of fluorophores at each time point {ni}.
A global optimization algorithm is difficult as well as computa-
tionally expensive. In practice, we first calibrate (see below) most
of the continuous parameters, so that we can take most of the
parameter values as sharp priors while determining bleach steps.
This results in a smooth log-posterior when n0 > 1, and reliable
results.

When n0 > 1, we first determine a range of acceptable n0 values.
The order-of-magnitude range can be determined by knowledge of
the experimental system or can be quickly obtained by a naive ratio-
metric approach. This range is a uniform prior on n0. Within the
user defined range of n0 values, we maximize the log-posterior with
a golden section search41 that is adopted for discrete values. For each
value of n0 considered, an initial set of fluorophore counts {ni} are
generated using

ni = round(n0e−ti/τ), (8)

with the lifetime τ determined from an exponential fit to the curve.
This initial array of fluorophore counts serves as a naive guess to
start the optimization.

Since the MAP estimation of any continuous parameters (see
below) depend on the discrete parameters {ni}, effective optimiza-
tion remains an iterative procedure. At each iteration, the tim-
ing of one (randomly chosen) individual bleach event is varied
for all possible times between and including the previous and
the subsequent bleach events. In principle, this allows the iter-
ative procedure to explore all configurations of {ni}. In prac-
tice, the largest log-posterior value is chosen at every iteration.

Iteration is continued until the log-posterior cannot be further
improved. Since the parametric landscape is smooth when fitting to
curves with known continuous parameters, or for calibration with
n0 = 1, this iterative procedure efficiently maximizes the posterior
distribution.

G. MAP estimation of continuous parameters
The continuous parameters {ν, a, q, σ2

1 , σ2
0} can each be easily

determined by maximizing the log-posterior L.
Using 0 = ∂L/∂q, we obtain

qMAP =
N⟨n⟩ − n0

N⟨n⟩ − nN−1
, (9)

where ⟨n⟩ is the time-average number of fluorophores within the
time series {ni} with length N; n0 is the number of fluorophores at
the start of the series and nN−1 is the number of fluorophores at the
end. While qMAP requires {ni}, we can easily update qMAP at every
step of the iterative procedure detailed above for {ni} to get a full
MAP estimation.

The MAP estimates of the brightness per fluorophore νMAP and
background illumination aMAP are determined by setting ∂L/∂ν = 0
and ∂L/∂a = 0 to obtain

νMAP =
σ2
nI′

σ2
n′

(10)

and

aMAP = ⟨I⟩′ − νMAP⟨n⟩′, (11)

where the primes indicate a weighted average using the noise
variance (i.e., ⟨I⟩′ ≡ ∑Iiwi/∑wi with wi = 1/σ2

i ), and σ2
nI′

≡ ⟨nI⟩′ − ⟨n⟩′⟨I⟩′.
The MAP estimates of the noise variance parameters σ2

0 and
σ2

1 cannot be expressed in closed forms but can be determined self-
consistently using

F ≡ ⟨mi⟩
⟨σ2

1ni + σ2
0⟩
= 1,

mi ≡ (Ii − νMAPni − aMAP)2,
(12)

where the angular brackets denote averages. The bisection method41

is used to solve F = 1 and thus numerically determines the MAP
noise parameters for each curve. For each value of σ2

0 within the
range 0 < σ2

0 ≤ ⟨mi⟩, the solution of F is initially bracketed between

σ2
1,low = 0

and

σ2
1,high = ∑

ni≠0

mi

ni
/(N − ∑

ni=0
mi/σ2

0). (13)

In this paper, these continuous parameters are determined with
calibration data with n̂0 = 1, and then applied as priors to general
traces with n̂0 ≥ 1. Calibration data can be obtained by fitting only
the portions of data that contain the last bleach step or it could be
done with a dedicated experiment.
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H. Calibrating continuous parameters
with experimental data

We developed a single-fluorophore (n̂0 = 1) test sample to
illustrate calibration. A 28 base-pair single-stranded DNA oligonu-
cleotide was labeled with a single Cy5 dye on the 3′-end, henceforth
named A1-Cy5. The complementary strand of A1-Cy5 was modi-
fied with 3′-Biotin-TEG (triethylene glycol) for surface immobiliza-
tion. After hybridizing A1-Cy5 with its complementary strand, the
resultant double stranded DNA was immobilized onto the
streptavidin-coated surface of a glass coverslip at the bottom of a
flow chamber.8 The immobilized DNA molecules were suspended
in a Tris-EDTA buffer (pH 8.0) with 2.5 mM protocatechuic acid
(PCA), 50 nM protocatechuate-3,4-dioxygenase (PCD), and 10 mM
Trolox (Sigma-Aldrich) added for photoprotection purposes.42 The
sample was imaged on a custom-built total internal reflection
fluorescence (TIRF) microscope using a 635-nm excitation laser
(TECRL-635, WorldStarTech) with an intensity of 60 W/cm2 mea-
sured at the sample.43 These conditions resulted in negligible flu-
orophore blinking in our calibration data. The Cy5 fluorescence
from the sample was recorded by an EMCCD camera (iXon DU-
897BV, Andor) with an exposure time of 0.3 s/frame. A total of 315
molecules were identified in a 43.5 μm × 43.5 μm region of the sam-
ple, and a sequence of 1000 frames was acquired. At the end of the
measurement, a significant fraction of the Cy5 molecules within the
field of view were photobleached.

We extracted intensity traces from these images using the open-
source CellProfiler application.44 A CellProfiler pipeline (illustrated
in the supplementary material, Figs. S2 and S3) was used to first
identify acceptable fluorescent objects of interest, and then to mea-
sure the intensities of the accepted objects over the time-separated
series of images. Acceptable objects were those that were circular,
were within a range of four to eight pixels in diameter, and did
not have neighboring objects with any adjacent pixels. These cri-
teria excluded overlapping objects and minimized signal overlap
between the objects. We considered n0 ∈ {0, 1} and obtained MAP
estimates of n0 and all photophysical parameters. We found smooth
log-posteriors during calibration. Of the 97 traces initially identified
from the image set, a total of 49 remained after discarding those that
contained interfering signals or that did not capture a bleach event
(with n0,MAP = 0). All 97 traces and the calibration code are provided
as the supplementary material.

Histograms of MAP estimates were constructed for the ensem-
ble of traces (shown in the supplementary material, Fig. S4). We
estimated the continuous parameters from the means of the ν, a, σ2

0 ,
and σ2

1 distributions. The mode of the distribution of q values was
used to estimate the nonbleach probability, due to the large skew of
the q distribution. We used these estimates (rounded) for model-
ing with n̂0 > 1: our default parameters are fluorophore brightness
ν = 260, background intensity a = 1530, per fluorophore noise vari-
ance σ2

1 = 230, background noise variance σ2
0 = 430, and nonbleach

probability q = 0.9973. We also use N = 5000 data points with
Δt = 0.3 s as a default.

I. Photon counting
Using an intensity unit ν0 = σ2

1/ν gives us rescaled parame-
ters with ν̃ ≡ ν/ν0 = ν2/σ2

1 = σ̃2
1 . In these units, the variance of

the intensity due to a single fluorophore equals its intensity, so these

units count detected photons. The total expected (average) number
of detected photons per fluorophore is then easily determined to be

μeff = ∫
∞

0
e−t/τ ν̃dt/Δt

= τν2

σ2
1Δt

. (14)

The average fraction of photons detected in a single-timestep is
α = Δt/τ = ν̃/μeff . From our calibration, in photon units, we have
ν̃ ≃ 294, μeff ≃ 1.1 × 105, τ = 111 s, and α = Δt/τ ≃ 0.0027.

J. DNA ladders
For further experimental validation, we used a self-assembled

interleaving DNA structure (“ladder”) formed by two building
blocks, termed A1 and A2. These are partially complementary 30-bp
ssDNA strands which are each labeled with a Cy5 dye at the 5′-end
(see below, top panel of Fig. 5). The initial unit in the ladder con-
tains a biotin at the 3′-end to immobilize the ladder on glass via the
pull-down method used for TIRF imaging (see Subsection II H).

We analyzed photobleaching data from a ladder with an aver-
age size of 16 ± 5 building blocks, as estimated from the average
diffusion coefficient.45 We measured the diffusion coefficient of the
ladder using fluorescence correlation spectroscopy (FCS);46 the FCS
curve and the fitting analysis are included in the supplementary
material. The DNA photobleaching data were acquired as described
in Sec. II H, except the excitation intensity was approximately 6
times lower. We also acquired single-step data from a calibration
sample immediately prior to the multi-step sample under exactly the
same excitation/detection conditions.

K. Alternative algorithms
The simplest approach used to determine n0 given a calibrated

parameterization is to take the ratio of the initial background-
subtracted intensity to the step-size ν. This is labeled “ratiometric” in
subsequent plots. A significant advantage of this approach is that it is
very simple to implement. One can also first filter the data to reduce
noise. Commonly, a Chung-Kennedy (CK) edge-preserving filter is
used.23 Here, we use a CK exponent p = 25 (chosen for best results)
and different widths of the analysis window, w. We only show w = 4
and w = 16 in subsequent plots for visual clarity. The unfiltered
ratiometric approach corresponds to a limiting width w = 0.

The analyses of simulated photobleaching traces were also
done using a change-point (CP) analysis algorithm that has been
described previously,34 implemented with custom software.8 A sig-
nificant advantage of this approach is that no calibration of flu-
orophore intensity is needed. Briefly, an experimentally measured
intensity-time trace I(t) typically exhibits uniform binning, so that
data can be represented as a vector [I(Δt), I(2Δt), . . ., I(nΔt), . . .].
For CP analysis, a segment of the trace up to the time point t = nΔt
is considered with n > 3. For this truncated trace, a cumulative-sum
vector is computed

cusumn(k) ≡
k

∑
j=1

I(jΔt), (15)

with k ∈ {1, . . ., n}. A deviation vector devin is then defined as the
difference between the cusumn vector and the cumulative sum of a
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virtual trace of constant intensity equal to the mean of all n time
points,

devin(k) ≡ cusumn(k) − k
∑n

j=1 I(jΔt)
n

. (16)

A putative change-point is selected at the time point k = m where
|devin(k)| is maximum. The candidate change-points are subject to
a two-sample t-test screening procedure that requires the intensity
values immediately before and after the candidate change-point to
be statistically different with a p-value less than 10−5. For more
details, see the supplementary material and Refs. 8 and 34.

III. RESULTS
A. Algorithm performance vs n̂0

We simulated ensembles of 1000 bleach curves for different n̂0
values, using the experimentally calibrated default parameters. The
computational time required to identify the MAP {ni} scales linearly
with the initial number of fluorophores n̂0, with the range of n0 val-
ues, and with the number of frames N—and is approximately inde-
pendent of other parameters. The average computing time needed
for one trace with n̂0 = 10 is 1 min, using a one-core (2 GHz CPU)
laptop.

We first characterized the width of the MAP distribution of
n0, σn0 , which represents the imprecision of our MAP approach. In
Fig. 2(a), we plot σn0 vs n̂0 with large green circles. The error bars are
calculated from bootstrap resampling of the bleach fits. The absolute
width remains small for all n̂0 studied. The approximate asymptotic
behavior ∼ n̂1/2

0 at larger n̂0 is also indicated (black dashed line). The
asymptotic behaviour implies that the fractional error σn0/n̂0 will
decrease as n̂0 increases. In Fig. 2(b), we plot the bias vs n̂0. The bias
remains small (below one step) for the MAP approach even when
n̂0 > 103.

Considering ratiometric approaches, we see in Fig. 2(a) that
averaging typically worsens imprecision with respect to the raw
ratiometric estimate by averaging over multiple stochastic steps. We

also see in Fig. 2(b) that averaging also introduces a bias (systematic
underestimation) for the same reason. However, the raw ratiomet-
ric approach (small dark squares) almost performs as well as the
MAP approach in terms of precision. In contrast, the change-point
algorithm (CP) does not perform better than either the ratiometric
or the MAP approaches, though it does have the advantage of not
needing any calibration.

We see that non-CP techniques share the asymptotic impre-
cision ∼ n̂1/2

0 dependence. This imprecision arises from the larger
noise with n̂0, via Eq. (2). While the CP algorithm appears to
approach an asymptotically constant imprecision at large n̂0, it is at
the expense of significant inaccuracy (large bias).

B. Algorithm performance vs exposure time Δt
The exposure times Δt of the camera used in single-molecule

photobleach experiments not only determine the temporal resolu-
tion but also provide effective averaging for larger Δt. How should
Δt be adjusted, either during data acquisition or after, for best
algorithmic performance?

The intensity, or photon count, at each time-step is propor-
tional to Δt – and so is the step-size ν. Due to the Poisson nature
of shot-noise, the noise-variance parameters σ2

0 and σ2
1 are also pro-

portional to Δt—and so is the background offset a. However, the
nonbleach probability q depends nonlinearly on the bleach rate and
exposure time, so from Eq. (5), we have q = qΔt/Δt00 . To explore Δt
effects, we simulated ensembles of 1000 curves with n0 = 10 using
kinetic Monte Carlo and with a time-weighted average over the
number of fluorophores within each time-step Δt. Default param-
eters were used for Δt0 = 0.3 s, and they were scaled appropriately
with Δt. The same absolute duration tmax was used for all Δt, i.e.,
N = 5000Δt0/Δt.

In Fig. 3(a), we have scaled Δt by the average time to the
first bleach event, δt1 ≡ τ/n0. For the ratiometric approaches, we
see increasing imprecision at both very small and very large Δt. At
larger Δt, we are averaging over O(Δt/δt1) steps, which provides

FIG. 2. (a) Imprecision vs n̂0. The standard deviation of the estimated number of fluorophores σn0 vs the number of fluorophores n̂0, for various methods as indicated in the
legend: MAP algorithm (large green circles), CP (red diamonds), ratiometric without filtering (small dark-blue squares), or with CK filtering (w = 4, medium blue squares and
w = 16, large blue squares). The same legend applies to subsequent figures as well. Averages are taken over 1000 fits of the simulated data, using the default photophysical
parameters. Bootstrap error bars are shown. The black dashed line indicates ∼ n̂1/2

0 asymptotic behavior. For n̂0 < 8, the MAP algorithm returned the exact n̂0 for all fits,
so the estimated σn0 = 0. (b) The corresponding bias ⟨n0⟩ − n̂0 vs the true n̂0. Most algorithms have a negative bias, indicating a systematic underestimate of n̂0. Bias
increases in magnitude with n̂0.
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FIG. 3. (a) Imprecision vs scaled exposure time. The standard-deviation of the estimated n0, σn0 vs the scaled exposure time Δt/δt1, where δt1 ≡ τ/n̂0 is the average
duration of the first bleach step. For each point, an ensemble of 1000 model curves was simulated from default parameters with n̂0 = 10, adjusted for exposure time in the
time-series data (see the text), and fit. Imprecision grows with larger Δt as ∼ (Δt/δt1)1/2 (right black dashed line). Imprecision of ratiometric and CP approaches also grows
with smaller Δt as ∼ (Δt/δt1)−1/2 (left black dashed line), due to noise in the time-series data. (b) Bias vs Δt/δt1 for the same data. The increasing bias at larger Δt is due
to averaging over initial bleach events.

a standard-deviation of O(
√
Δt/δt1)—as indicated by the increas-

ing black dashed line. Supporting this interpretation, in Fig. 3(b), we
see that the bias also increases with Δt. For smaller Δt, the decreas-
ing averaging provided by Δt in the ratiometric approaches increases
the imprecision by O(1/

√
Δt)—as indicated by the decreasing

black dashed line. The CP algorithm behaves like the ratiometric
approaches, but with a nonmonotonic imprecision at larger Δt.

For the Bayesian MAP approach, imprecision increases at large
Δt but not at small Δt. This is because all of the data are used in
the MAP inference, not just the first data-point as in the ratiomet-
ric approaches. For Δt/δt1 ≲ 0.03, we obtain a noise-floor that is
determined by the finite-brightness of the fluorophores (μeff , see
Sec. III C).

C. More photons
An important part of the experimental design is the choice of

fluorophore. From Eq. (14), the total measured photon output of
each fluorophore is μeff = τν2/(σ2

1Δt). As μeff increases at constant

Δt or α, there are more photons per frame and so a higher signal-to-
noise ratio. Intuitively, we expect that larger μeff should improve the
performance of all algorithms.

We varied μeff by changing the bleach step size ν for ensem-
bles of 1000 bleach traces, each with n̂ = 10 and default parame-
ters. In Fig. 4(a), we plot the imprecision σn0 vs μeff . As expected,
the precision of the estimate of n0 generally improves as μeff
increases. The MAP algorithm performs best for all μeff . We see
a characteristic σn0 ∼ 1/√μeff asymptotic behavior at larger μeff :
doubling the number of photons effectively doubles the number
of “measurements” of n̂0.

For ratiometric approaches, the optimal amount of filtering
depends on μeff . Smaller photon yields benefit from more filtering,
since they have more noise. However, the filtering leads to increased
bias as seen in Fig. 4(b). The bias does not improve with larger
μeff due to the fixed Δt/δt1 = −n̂0 ln q ≃ 0.02. Interestingly, the
bias degrades significantly at smaller μeff – particularly for the MAP
and CP approaches. The origin of the bias for the MAP approach
appears to be due to using a “point-estimate” of the maximum of the

FIG. 4. (a) Imprecision vs photon yield. The standard deviation of the estimated number of fluorophores, σn0 , vs the total detected photons per fluorophore μeff . We estimate
σn0 from 1000 simulated traces with n̂0 = 10, a = 1000, q = 0.998, Δt = 0.3 s, σ2

0 = 1600, and σ2
1 = 900. Bootstrap error bars are shown. We vary μeff by changing the

step-size ν. For μeff ≳ 105, the MAP algorithm returned the exact n̂0 for all fits, so the estimated σn0 = 0. The black dashed line shows the expected 1/√μeff dependence at
larger μeff . (b) Bias vs photon yield. The systematic error of the estimate of n0 vs μeff .
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posterior, rather than the full (unbiased) posterior distribution. This
indicates significant skew asymmetry in the posterior, especially at
small μeff .

D. Multistep ladders
Figures 5(a)–5(d) depict the results of the comparative MAP

vs CP analysis of the DNA ladder and the corresponding cali-
bration single-dye sample. Acceptable fluorescent spots in the raw

images [Fig. 5(a)] were identified and intensity traces were extracted
using the CellProfiler pipeline (see the supplementary material for
details). A total of 149 intensity traces were analyzed for the DNA
ladder and 164 traces for the calibration sample. An example of how
a multistep photobleaching trace for a DNA ladder molecule was
fit by the two algorithms is shown in Fig. 5(b). Bayes MAP fitting
detects 14 steps, while CP fit detects approximately half as many, i.e.,
7 steps. The discrepancy arises from the fact that the CP algorithm
is not bound to the fixed step intensity imposed in MAP based on

FIG. 5. Comparison of MAP and CP algorithms with experimental multistep photobleaching data. (Top) Scheme of DNA “ladder” of Cy5-labeled, partially complementary
ssDNA building blocks, termed A1 and A2; the first subunit is biotinylated for surface immobilization. (a) TIRF image of surface-immobilized DNA ladders, with green circles
highlighting the spots selected for photobleaching analysis. (b) Analysis of the intensity trace from a single spot using the CP algorithm detected 7 photobleaching steps
(blue), while 14 steps were detected using the MAP algorithm (red). (c) Histograms of the step intensity for CP (blue) and MAP (red) algorithms. The MAP histogram has 164
events from a single-step calibration sample; the average value (1.3 kcps) was used as the calibration step-size. The CP histogram includes 744 step-wise photobleaching
events from all DNA ladder molecules. (d) The distribution of the number of steps per DNA ladder molecule reported by CP (blue) and MAP (red) algorithms. A total of 149
ladder molecules from two separate regions in the same sample chamber were analyzed.
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a prior, but it can take any value. This is clear in Fig. 5(c), where
the step intensity distributions for the control (red) and the lad-
der (output by CP, blue) are shown. The former is narrow with an
average of 1.3 ± 0.2 kcps, which was used by MAP to fit the ladder
data, while the latter is broad (average 2.7 ± 1.5 kcps) and extends
to 10 kcps. Correspondingly, the distribution of the number of steps
(fluorophores) detected per molecule produced by the two methods
is significantly different [Fig. 5(d)]. In agreement with the simula-
tion results, CP tends to underestimate the number of fluorophores,
probably due to a combination of detection noise and concomitant
photobleaching events. On the other hand, MAP analysis gives an
average of 12 ± 7 steps per trace, closer to the FCS-determined value
(16 ± 5), although the distribution is quite broad, with up to 30
steps per trace. Most likely, this reflects a real size heterogeneity of
DNA ladders formed by spontaneous self-assembly of the two DNA
building blocks.

IV. DISCUSSION
Many techniques have been developed to count fluorophores

in the steplike intensity traces measured from single-molecule pho-
tobleaching experiments. Most of these filter out noise from time-
traces during analysis, e.g., using the nonlinear edge-preserving
Chung-Kennedy (CK) filter.23 Filtering and other ad hoc statistical
techniques typically require significant fine-tuning of the analysis
pipeline, and can have significant bias in the resulting estimates of
step counts.25 Principled model-driven Bayesian approaches have
also been proposed, but they have used ad hoc priors to avoid biased
estimates of step counts.16

We have presented a Bayesian approach to step-counting with a
physics-based prior [Eq. (6)]. Our prior builds in the steplike mono-
tonic decay of molecular photobleaching, with more rapid bleaching
at early times when more fluorophores are unbleached. We have
shown that a MAP point-estimation (maximizing the posterior dis-
tribution) of individual photobleach traces is practical, provides sim-
ple formulas for the photophysics parameters, and leads to precise
and minimally biased estimates of the true number of steps n̂0. We
have shown with experimental data that our method lets us calibrate
the photophysics, and with simulated data that our method lets us
reliably count thousands of fluorophores.

Using simulated data, has allowed us to characterize the impre-
cision σn0 and bias ⟨n0⟩ − n̂0 of the estimate of the number of fluo-
rophores n̂0 per molecule. The imprecision is the expected random
error from one photobleach trace, while the bias is the average sys-
tematic error that remains even with many traces. We have explored
the roles of the number of fluorophores n̂0, the exposure time of
individual data points Δt, and the fluorophore stability as parame-
terized by the average number of photons detected per fluorophore
before bleaching μeff . We have investigated our MAP approach, a
change-point (CP) approach, and ratiometric approaches both with
and without edge-preserving CK filtering.

For all methods, both the imprecision and bias grew with n̂0;
the optimal step size was approximately Δt ≃ 0.03 δt1, i.e., 3% of
the first bleach time; and the best results were obtained with the
most photostable fluorophores, with large μeff ≳ 104. However, the
details vary considerably among the methods. In particular, large
bias can be observed, typically by undercounting n̂0 in the CK or CP
approaches. A general conclusion is that analysis of simulated data is

necessary to reliably estimate (and minimize) imprecision and bias
for any given step-counting algorithm and for each experimental
set-up.

Our Bayesian MAP approach, with a photobleaching prior, has
the smallest imprecision of these approaches with minimal bias.
Imprecision grows as n̂1/2

0 and decreases as μ1/2
eff , both due to intrinsic

shot-noise. Furthermore, small Δt/δt1 does not degrade our princi-
pled approach.47 This is because the information contained in the
trace is not lost by using shorter exposure times since all of the trace
is used. In contrast, long exposure times with Δt ≳ 0.1τ/n̂0 will pro-
vide effectively smooth initial steps. This introduces imprecision, but
also bias since our Bayesian model no longer identically represents
the data. Nevertheless, the bias in Fig. 3(b) remains small because
the MAP approach uses information contained in the noise [Eq. (2)],
which reflects n̂0 even at larger Δt.

Since absolute imprecision grows as n̂1/2
0 , the relative impreci-

sion gets smaller as n̂0 increases. However, if we insist on a precise
fluorophore count for every trace, with σn0 ≲ 0.1, then Fig. 2 indi-
cates that we will be limited to n0 ≲ 20 with μeff ≃ 1.1 × 105. For
these small n̂0, the bias is insignificant. For a given σn0 , our MAP
approach provides a twofold improvement of the maximal precise
n̂0 over ratiometric approaches and is much better than CP.

The bare ratiometric approach has no bias, and is simple to
implement once the photophysics has been calibrated. However, it
suffers from increased imprecision due to noise, especially as n̂0
increases, for smaller exposure timesΔt, and for smaller photon yield
μeff . Using CK filtering can reduce imprecision, but it introduces sig-
nificant bias at larger Δt. As a result, the optimal exposure time Δt
will depend on the details of the filtering, and vice versa.

To be more specific, most of our results (Figs. 1–3) reflect
the photophysics of the photostable red dye Cy5 with μeff ≃ 1.1
× 105. Less photostable dyes or fluorophores, such as the green
dyes ATTO532 or Alexa532, would have one order of magnitude
smaller photon yield,22 i.e., μeff ≈ 104. In that regime, from Fig. 4
we see that significant imprecision is unavoidable with ratiometric
approaches. Furthermore, because of the significant noise associ-
ated with μeff ≲ 105, appropriately filtered ratiometric approaches
would be required. With off-the-shelf optics or for live-cell imaging,
where oxygen scavenging buffers are not feasible, we may expect μeff
≈ 103 and more pronounced imprecision, and bias. Most applica-
tions of internal or external fluorescence standards are ratiometric,
and suffer from these effects. That said, errors in the calibration may
dominate the effects described here.5

A change-point approach has the advantage of requiring no cal-
ibration. As such, it may be the easiest approach to analyze only a few
photobleach traces with a small number of steps.35 However, it suf-
fers from significant imprecision for all n̂0 and bias for n̂0 ≳ 10 or
for smaller Δt or μeff . It also requires data to extend to ni = 0, i.e.,
complete bleaching of the molecule.

A principled model-based Bayesian approach to fitting pho-
tobleach traces, such as ours, depends on the appropriateness of
the physical model. For example, though fluorophore blinking can
be minimized experimentally,42,48–51 our model does not account
for any remaining blinking unless the blinking is fast enough with
respect to τ that it can be included in our noise model. We also
do not accommodate variation of the photophysical parameters
between fluorophores, for example, due to their local molecular or
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cellular context—again unless this variation can be treated as a fast
random process that can be implicitly included in our noise model.
With sufficient experimental guidance, these effects could be explic-
itly included with a hierarchical Bayesian model.52 We expect that
the bias and imprecision of any given analysis approach will depend
on the details of the system, and will require modeling to prop-
erly characterize. Additionally, any prebleaching or inhomogeneous
(inefficient) labeling needs to be accounted for after our estimation
of n0 active fluorescent labels.29

We have presented a MAP approach, which is a point-estimate
of the Bayesian posterior. We separated photophysics calibration
from n̂0 estimation so that the likelihood of each would remain
smooth, and so that we could more easily compare with a vari-
ety of other n̂0 estimation approaches. In principle, calibration can
be made arbitrarily accurate with sufficient number of calibration
traces. However, a global calibration assumes that the illumina-
tion intensity, and other aspects of the photophysics, is uniform
across the sample. In principle, efficient Markov chain Monte Carlo
(MCMC) approaches should be able to characterize even a rough
likelihood for individual photobleach traces without calibration, and
would also be able to avoid bias due to skewed posteriors with small
μeff . This is left for future development.

SUPPLEMENTARY MATERIAL

See the supplementary material for the change-point algorithm
details, Figs. S1–S4 about calibration, and code and data used in the
analysis.

ACKNOWLEDGMENTS
We thank the ACGT Corporation (Toronto, Canada) for sup-

plying the DNA ladder construct. This work was supported by
the Natural Sciences and Engineering Research Council of Canada
(Grant No. RGPIN 2017-06030 to C.C.G. and Grant No. RGPIN
2019-05888 to A.D.R.).

REFERENCES
1M. H. Ulbrich and E. Y. Isacoff, Nat. Methods 4, 319 (2007).
2N. Watanabe and T. J. Mitchison, Science 295, 1083 (2002).
3K. E. Hines, J. Gen. Physiol. 141, 737 (2013).
4R. J. Arant and M. H. Ulbrich, ChemPhysChem 15, 600 (2014).
5V. C. Coffman and J.-Q. Wu, Mol. Biol. Cell 25, 1545 (2014).
6A. Penna, A. Demuro, A. V. Yeromin, S. L. Zhang, O. Safrina, I. Parker, and M. D.
Cahalan, Nature 456, 116 (2008).
7H. McGuire, M. R. P. Aurousseau, D. Bowie, and R. Blunck, J. Biol. Chem. 287,
35912 (2012).
8R. V. Shivnaraine, D. D. Fernandes, H. Ji, Y. Li, B. Kelly, Z. Zhang, Y. R. Han,
F. Huang, K. S. Sankar, D. N. Dubins, J. V. Rocheleau, J. W. Wells, and C. C.
Gradinaru, J. Am. Chem. Soc. 138, 11583 (2016).
9H. Yokota, Y. A. Chujo, and Y. Harada, Biophys. J. 104, 924 (2013).
10Y. Sugiyama, I. Kawabata, K. Sobue, and S. Okabe, Nat. Methods 2, 677 (2005).
11J.-Q. Wu, C. D. McCormick, and T. D. Pollard, Methods Cell Biol. 89, 253
(2008).
12M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P.
Armitage, Nature 443, 355 (2006).
13M. C. Leake, N. P. Greene, R. M. Godun, T. Granjon, G. Buchanan, S. Chen,
R. M. Berry, T. Palmer, and B. C. Berks, Proc. Natl. Acad. Sci. U. S. A. 105, 15376
(2008).

14C. R. Nayak and A. D. Rutenberg, Biophys. J. 101, 2284 (2011).
15N. Rosenfeld, T. J. Perkins, U. Alon, M. B. Elowitz, and P. S. Swain, Biophys. J.
91, 759 (2006).
16K. Tsekouras, T. C. Custer, H. Jashnsaz, N. G. Walter, and S. Pressé, Mol. Biol.
Cell 27, 3601 (2016).
17H. Qian and E. L. Elson, Proc. Natl. Acad. Sci. U. S. A. 87, 5479 (1990).
18J. Tellinghuisen and C. W. Wilkerson, Anal. Chem. 65, 1240 (1993).
19M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, Biophys. J. 94, 2320
(2008).
20C. Eggeling, J. Widengren, R. Rigler, and C. Seidel, Anal. Chem. 70, 2651
(1998).
21N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood,
M. W. Davidson, and R. Y. Tsien, Proc. SPIE 7191, 719105 (2009).
22V. Glembockyte, J. Lin, and G. Cosa, J. Phys. Chem. B 120, 11923 (2016).
23S. H. Chung and R. A. Kennedy, J. Neurosci. Methods 40, 71 (1991).
24B. C. Carter, M. Vershinin, and S. P. Gross, Biophys. J. 94, 306 (2008).
25V. C. Coffman and J.-Q. Wu, Trends Biochem. Sci. 37, 499 (2012).
26In this paper, we ignore the individual photon arrival times and consider only a
timeseries of photon counts for each macromolecule that is uniformly binned in
time, as characterized by α.
27A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis
(CRC Press, 2014).
28J.-L. Gauvain, IEEE Trans. Speech Audio Process. 2, 291 (1994).
29K. E. Hines, Biophys. J. 108, 2103 (2015).
30J. E. Bronson, J. Fei, J. M. Hofman, R. L. Gonzalez, and C. H. Wiggins, Biophys. J.
97, 3196 (2009).
31L. P. Watkins and H. Yang, J. Phys. Chem. B 109, 617 (2005).
32B. Kalafut and K. Visscher, Comput. Phys. Commun. 179, 716 (2008).
33B. Shuang, D. Cooper, J. N. Taylor, L. Kisley, J. Chen, W. Wang, C.-B. Li,
T. Komatsuzaki, and C. F. Landes, The J. Phys. Chem. Lett. 5, 3157 (2014).
34C. R. Gallistel, S. Fairhurst, and P. Balsam, Proc. Natl. Acad. Sci. U. S. A. 101,
13124 (2004).
35H. Zhang and P. Guo, Methods 67, 169 (2014).
36K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, 2012).
37M. Hirsch, R. J. Wareham, M. L. Martin-Fernandez, M. P. Hobson, and
D. J. Rolfe, PLoS One 8, e53671 (2013).
38D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
39A. V. Mamontova, A. M. Bogdanov, and K. A. Lukyanov, BioTechniques 58,
258 (2015).
40A. Acharya, A. M. Bogdanov, B. L. Grigorenko, K. B. Bravaya, A. V. Nemukhin,
K. A. Lukyanov, and A. I. Krylov, Chem. Rev. 117, 758 (2017).
41W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes, 3rd edition (Cambridge University Press, Cambridge, 2007), Chap. 9.
42C. E. Aitken, R. A. Marshall, and J. D. Puglisi, Biophys. J. 94, 1826 (2008).
43B. Liu, A. Mazouchi, and C. C. Gradinaru, J. Phys. Chem. B 114, 15191 (2010).
44A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang,
O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, and
D. M. Sabatini, Genome Biol. 7, R100 (2006).
45R. M. Robertson, S. Laib, and D. E. Smith, Proc. Natl. Acad. Sci. U. S. A. 103,
7310 (2006).
46Y. Li, R. V. Shivnaraine, F. Huang, J. W. Wells, and C. C. Gradinaru, Biophys. J.
115, 881 (2018).
47We do require that enough photons are delivered per Δt to satisfy our Gaussian
approximation of the Poisson photon statistics, i.e. αμeff ≫ 1.
48Y. Fu, J. Zhang, and J. R. Lakowicz, Langmuir 24, 3429 (2008).
49R. Dave, D. S. Terry, J. B. Munro, and S. C. Blanchard, Biophys. J. 96, 2371
(2009).
50T. Ha and P. Tinnefeld, Annu. Rev. Phys. Chem. 63, 595 (2012).
51Q. Zheng, M. F. Juette, S. Jockusch, M. R. Wasserman, Z. Zhou, R. B. Altman,
and S. C. Blanchard, Chem. Soc. Rev. 43, 1044 (2014).
52N. Cressie, C. A. Calder, J. S. Clark, J. M. Ver Hoef, and C. K. Wikle, Ecol. Appl.
19, 553 (2009).

J. Chem. Phys. 152, 024110 (2020); doi: 10.1063/1.5132957 152, 024110-10

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5132957#suppl
https://doi.org/10.1038/nmeth1024
https://doi.org/10.1126/science.1067470
https://doi.org/10.1085/jgp.201310988
https://doi.org/10.1002/cphc.201301092
https://doi.org/10.1091/mbc.e13-05-0249
https://doi.org/10.1038/nature07338
https://doi.org/10.1074/jbc.m112.402057
https://doi.org/10.1021/jacs.6b04032
https://doi.org/10.1016/j.bpj.2013.01.014
https://doi.org/10.1038/nmeth783
https://doi.org/10.1016/s0091-679x(08)00609-2
https://doi.org/10.1038/nature05135
https://doi.org/10.1073/pnas.0806338105
https://doi.org/10.1016/j.bpj.2011.09.032
https://doi.org/10.1529/biophysj.105.073098
https://doi.org/10.1091/mbc.e16-06-0404
https://doi.org/10.1091/mbc.e16-06-0404
https://doi.org/10.1073/pnas.87.14.5479
https://doi.org/10.1021/ac00057a022
https://doi.org/10.1529/biophysj.107.114645
https://doi.org/10.1021/ac980027p
https://doi.org/10.1117/12.814684
https://doi.org/10.1021/acs.jpcb.6b10725
https://doi.org/10.1016/0165-0270(91)90118-j
https://doi.org/10.1529/biophysj.107.110601
https://doi.org/10.1016/j.tibs.2012.08.002
https://doi.org/10.1109/89.279278
https://doi.org/10.1016/j.bpj.2015.03.042
https://doi.org/10.1016/j.bpj.2009.09.031
https://doi.org/10.1021/jp0467548
https://doi.org/10.1016/j.cpc.2008.06.008
https://doi.org/10.1021/jz501435p
https://doi.org/10.1073/pnas.0404965101
https://doi.org/10.1016/j.ymeth.2014.01.010
https://doi.org/10.1371/journal.pone.0053671
https://doi.org/10.1021/j100540a008
https://doi.org/10.2144/000114289
https://doi.org/10.1021/acs.chemrev.6b00238
https://doi.org/10.1529/biophysj.107.117689
https://doi.org/10.1021/jp104614d
https://doi.org/10.1186/gb-2006-7-10-r100
https://doi.org/10.1073/pnas.0601903103
https://doi.org/10.1016/j.bpj.2018.08.001
https://doi.org/10.1021/la702673p
https://doi.org/10.1016/j.bpj.2008.11.061
https://doi.org/10.1146/annurev-physchem-032210-103340
https://doi.org/10.1039/c3cs60237k
https://doi.org/10.1890/07-0744.1

