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Abstract We investigated efficient representations of
binarized health deficit data using the 2001–2002
National Health and Nutrition Examination Survey
(NHANES). We compared the abilities of features to
compress health deficit data and to predict adverse
outcomes. We used principal component analysis
(PCA) and several other dimensionality reduction
techniques, together with several varieties of the
frailty index (FI). We observed that the FI approxi-
mates the first — primary — component obtained by
PCA and other compression techniques. Most adverse
outcomes were well predicted using only the FI. While
the FI is therefore a useful technique for compress-
ing binary deficits into a single variable, additional
dimensions were needed for high-fidelity compres-
sion of health deficit data. Moreover, some outcomes
— including inflammation and metabolic dysfunction
— showed high-dimensional behaviour. We generally
found that clinical data were easier to compress than
lab data. Our results help to explain the success of the
FI as a simple dimensionality reduction technique for
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binary health data. We demonstrate how PCA extends
the FI, providing additional health information, and
allows us to explore system dimensionality and com-
plexity. PCA is a promising tool for determining and
exploring collective health features from collections of
binarized biomarkers.
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Introduction

Biological dysfunction arising from damage is central
to aging [1]. Representing dysfunction requires robust
summary measures of aging data, which can then help
us to operationalize theories of causal mechanisms [1–
3]. Is there a systematic way to generate summary
measures from observed health deficits? How well do
they predict a battery of adverse outcomes?

The frailty index (FI, see Table 1 for key abbrevia-
tions) is a simple, robust measure that is strongly
predictive of general adverse outcomes [4, 5].
Dichotomizing data as healthy (0) or deficit (1) probes
dysfunction directly. The FI is defined as the aver-
age number of dysfunctional (deficit) health variables
an individual has [6]. Conventionally, the FI is con-
structed from self-reported questionnaire — “clinical”
— data, such as (instrumental) activities of daily liv-
ing (I)ADLs and physical limitations. Recently, the
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Table 1 Nomenclature

FI Frailty index

FP Frailty phenotype

(I)ADL (Instrumental) activities of daily living

PC(A) Principal component (analysis)

LPC(A) Logistic PC (analysis)a

LSV(D) Logistic singular value (decomposition)b

GLM Generalized linear model

aCousin of PCA
bCousin of LPCA

FI has been extended to include “lab” biomarker
data [7, 8].

Aging is widely considered to be multidimensional
[1–3, 9–11]. The FI is just one of many univariate
summary health measures. In particular, many “bio-
logical ages” have been proposed. These measures
overlap only moderately, implying that a complete
description of “biological age” would require sev-
eral of them [12, 13]. Machine learning studies also
suggest multiple dimensions of health information,
though survival information appears to compress into
just one or two dimensions [14]. Furthermore, inter-
ventional study reviews often report improvement
along one dimension at the expense of worsening
along other dimensions: for example, mice treated
with metformin show improved treadmill performance
but reduced visual acuity [15]. For which outcomes
is a univariate health measure sufficient? Do integra-
tive hallmarks of aging [1] or bow tie systems [16],
which mediate interactions between multiple systems,
require multidimensional health measures?

The rapidly increasing dimensionality of “omics”
aging data [17] makes these questions pressing. For
example, Jansen et al. [12] studied over 20,000 gene
expressions from fewer than 3000 individuals. Data
with more variables than individuals carry the “curse
of dimensionality” which can lead to overfitting and
loss of interpretability with standard algorithms [18].
Condensing high-dimensional data into a few salient
features simplifies statistical modelling [18, 19]. To
achieve this, we need scalable and robust dimension-
ality reduction techniques.

While the FI is a simple and reproducible dimen-
sionality reduction technique [20] that compresses
30+ binary health variables [6] into a single, graded
measure [21], it has not been systematically extended

to higher-dimensional health features. Ad hoc multi-
variate extensions such as domain-specific FIs [22, 23]
or multiple biological ages [13] neglect the possibili-
ties that these measures may have gaps or redundan-
cies in the information they contain.

The canonical dimensionality reduction technique
in machine learning and statistics is principal com-
ponent analysis (PCA), which is robust, fast, and
systematically extensible [18]. PCA linearly combines
(rotates) existing health variables into a complete set
of new “latent” health variables — principal compo-
nents (PCs) — ordered from most to least variance.
By construction, the PCs are mutually independent
and hence do not suffer the problem of redundant
information faced by multiple ad hoc approaches.

PCA has been used to improve epigenetic clock
reliability [24], and to analyse raw biomarker data
[25, 26] and dysfunction biomarkers [27]. PCA is
robust to covariates, including sex, race, and study
population [25]. When used correctly, PCA summa-
rizes the salient information in a dataset. For example,
Entwistle et al. [28] applied PCA to NHANES III
dietary data and identified the first 4 PCs as being
idealized dietary patterns. Nevertheless, studies using
PCA to generate new health measures (PCs) from
deficit data are rare. Few, if any, have leveraged the
extensive literature on health deficit data that sur-
rounds the FI. Furthermore, none of the aforemen-
tioned studies has systematically explored multiple
dimensionality reduction algorithms nor the effect of
modifying the number of PCs on adverse outcome
prediction. What are the generic features of dimen-
sionality reduction of health deficit data? How can this
help us to understand and build upon the success of
the FI?

We should also explore what is the correct num-
ber of PCs to use for health deficit data. Arbitrarily
restricting which PCs to use has led to serious crit-
icisms of its reproducibility for low-rank projections
(e.g. only using the first two PCs) [29]. Others have
noted that mortality information can be found in low-
variance PCs, which are often neglected [24].

While the FI and PCA are both linear transfor-
mations, the FI imposes equal weightings of each
variable whereas PCA does not. Accordingly, the FI
and PCA need not be related. Nevertheless, previ-
ous work has shown that the first PC of biomarker
dysfunction data from hemodialysis patients approxi-
mately reproduces the two key phenomenon of the FI:
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approximately equal weightings across input vari-
ables, and good prediction of adverse outcomes,
including the frailty phenotype (FP) [27]. Further-
more, the FI has been shown to efficiently compress
clinical, deficit questionnaire data, with little unex-
plained residual variance [30]. However, research on
biomarker lab deficit data implies the presence of
additional dimensions [31]. How many dimensions are
relevant in lab biomarker data, and do they overlap
with clinical dimensions? Any such information that
is shared between lab and clinical domains will affect
joint dimensionality reduction.

As with the FI, our primary interest is in dam-
age arising from dysfunction, so we binarize data
as either normal (0) or dysfunctional/deficit (1).
We expect that compression of health deficit data
will find efficient representations of both dysfunc-
tion and adverse outcomes because health deficits are
themselves adverse outcomes, e.g. ADLs [32]. This
improves interpretability — dysfunction is what we
care about — and saves us from issues endemic to con-
tinuous variables, such as scaling, healthy variability,
and non-normal behaviour. Recent advances in PCA
specific to binary data provide additional techniques
that we also explore: “logistic” PCA [33] and “logistic
SVD” [33, 34] (SVD: singular value decomposition).

All of these PCA algorithms are lightweight with
minimal assumptions. They compress data into effi-
cient rank-ordered representations, where the first
dimension contains the most information and the last
contains the least. In contrast, latent variable mod-
els such as grade of membership [35–37], while more
directly interpretable, have sub-optimal compression
efficiency and do not rank-order their latent space.
Efficient, rank-ordered representations will effectively
coarse grain the data, allowing us to answer our
questions about dimensionality and information flow.
Here, we restrict our attention to PCA and its variants.

The goal of this study is to systematically explore
the use of PCA in compression and prediction of mul-
tidimensional health deficit data, and to compare PCA
with the FI. We also examine PCA alternatives. Com-
pression can tell us the maximum number of dimen-
sions required to efficiently represent input data, but
cannot a priori distinguish between useful information
and noise. We compare compression of binary deficit
data and prediction of adverse outcomes using both
outcome associations and a generalized linear model
(GLM). We include a battery of adverse outcomes to

test predictive power. Finally, we take a deeper look
at PCA, fully exploring its utility, its robustness, the
patterns it extracts from the data, i.e. PCs, and its sys-
tematic mode of action. We demonstrate that PCA
provides a multidimensional perspective of health not
available to univariate health measures.

Methods

Figure 1 outlines the study pipeline. We split the data
into three parallel analyses: compression, associations
with input/outcome variables, and prediction using
GLMs. We compared compression using the FI, PCA,
logistic PCA (LPCA) [33], and logistic singular value
decomposition (LSVD) [33, 34].

Data and pre-processing

We used data from the 2001–2002 NHANES with
linked public mortality records [38]. We included indi-
viduals over age 60 (N = 1872) to focus on older
individuals and to avoid problems with gated variables
[39]. We used lab and clinical health deficit data from
multiple domains to predict multiscale, multidomain
outcomes. In total, we included 26 clinical predictors,
29 lab predictors, 47 outcomes, and 7 demographical
variables.

The complete list of predictors, outcomes, and
covariates is provided in Online Resource S1.1. We
binarized all predictors using standard rules [40]
(Tables S1 and S2). This simplified our analysis and
forced our dimensionality reduction algorithms to find
efficient representations of dysfunction — as desired.
Outcomes included health biomarkers, disability, mor-
bidity, and mortality. All continuous outcomes were
standardized to zero mean and unit variance. We
included 7 demographic covariates: age (top-coded at
85), and (binarized) sex, race, family income, educa-
tion level, smoker status, and partner status.

The FI was computed as the average of binarized
predictor variables [6]. The FP was included as an
alternative frailty measure, defined as 3+ out of 5: low
BMI, bottom 20% for gait speed (sex-adjusted), and
self-reported: weakness, exhaustion, and low physical
activity [41].

Imputation was performed using multivariate impu-
tation by chained equations (MICE) version 3.10.0
[42]. We used the classification and regression tree
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Fig. 1 Study pipeline. We performed three parallel analy-
ses: compression, feature associations, and outcome modelling.
Data were preprocessed, resulting in an input matrix of health
deficit data, X, and an outcome matrix of adverse outcomes,
Y (rows: individuals, columns: variables). The input was trans-
formed by a dimensionality reduction algorithm, represented
by �, which was either the FI (frailty index), PCA (principal
component analysis), LPCA (logistic PCA), or LSVD (logistic
singular value decomposition). Each algorithm, �, generated a
matrix of latent features with tunable dimension, Z (dimension:
number of columns/features; the FI was not tunable). We tuned
the size of this latent feature space, Z, to infer compression

efficiency and the maximum dimensions of Z before features
became redundant (binarizing with optimal threshold, η). The
latent features were then associated with input and outcomes to
infer their information content and the flow of information from
input to output. The dimension of Z was then again tuned to pre-
dict the adverse outcomes. Ŷ represents the outcome estimates
by the generalized linear model (GLM), which were compared
to ground truth, Y , to determine the minimum dimension of Z

needed to achieve optimal prediction performance for each out-
come. This procedure allowed us to characterize the flow of
information through each dimensionality reduction algorithm

(CART) method, which performs well with similar
NHANES data [39]. We imputed all data, including
predictors, outcomes, covariates, survival informa-
tion, and auxiliary variables. Imputing outcomes had
no significant effect on prediction accuracies: except
for gait, which had a higher R2 by ∼0.05 (Online
Resource S1.2.4). We imputed 15 times, reflecting the
∼15% missingness [43]. We propagated the uncer-
tainty in these imputations into our final results using
Rubin’s rules [43]. We symmetrized and scaled stan-
dard errors (assuming normality), applied Rubin’s
rules, then rescaled to 95% confidence intervals (CIs).

In Online Resource S1.2, we provide consistency
checks on the imputed values and characterized the
missing data. Individuals with missing data were
older, with median (IQR) age 71 (65–78) vs 76 (67–
83) (Wilcox p = 2 · 10−16), and had significantly

worse survival, hazard ratio: 1.6(1) (p: 7 · 10−13,
log-rank test). This means that the missing data were
not missing completely at random and that failure to
impute could lead to biased results [44]. We performed
our initial analysis using complete case predictor and
demographic data (no missingness for each individ-
ual), and available case outcome data (individuals
were included for any outcome they had reported).
Complete case analysis yielded similar results to our
full, imputed analysis (Online Resource S4).

Performance metrics

Most of the binary outcomes and predictors were rare,
with many occurring in less than 10% of study par-
ticipants (Table S4). Such unbalanced data poses a
problem when measuring binary performance [45].
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An uninformative diagnostic test that returns negative
regardless of disease status would have 90% accu-
racy in diagnosing a disease with 10% prevalence. Its
Youden index [46], however, would be 0:

Youden index ≡ sensitivity + specificity − 1. (1)

A perfectly informative test would have a Youden
index of 1. The Youden index is strongly correlated
with the AUC, which estimates the probability that a
metric will correctly rank the positive individuals as
higher than negative individuals [39]. Assuming case
and control are both normality distributed with the
same variance, the AUC and Youden index are redun-
dant, for example Youden indexes of 0.2, 0.4, 0.6, and
0.8 correspond to AUCs of 0.64, 0.77, 0.88, and 0.97,
respectively [47]; this model fits our data very well
(Fig. S15).

When comparing continuous-continuous variable
pairs we used Spearman’s ρ, a non-parametric mea-
sure of correlation [48]; we took the absolute value
and estimated the confidence interval using quan-
tiles from bootstrapping (with 2000 resamples). For
models predicting continuous outcomes, we used R2,
the coefficient of determination, which measures the
explained variance as a proportion of the total vari-
ance with 1 being perfect. The mean-squared error
(MSE) is the average of the squared model residual
[18]. We standardized continuous outcomes to zero
mean and unit variance; hence, useful models have
MSE < 1 (assuming unit variance, R2 = 1 − MSE).
Time-to-event outcomes, i.e. survival, were scored
using the concordance-index (C-index), a cousin of
the AUC [39]. GLM predictive power used R2, MSE,

AUC, Youden and/or the C-index. Outcome associ-
ations used Spearman’s ρ (specifically |ρ|), AUC,
Youden, or the C-index (specifically |C − 0.5|).
Feature importance was first inferred from stepwise
regression, then validated using selection frequency
(Online Resource S3.3).

Input compression

We applied the FI, PCA, LPCA, and LSVD to the
predictor variables (binarized lab and clinical data)
— Fig. 2 illustrates how PCA compressed the data
by decomposing the 2D joint deficit histogram. We
treated the binary scale as an absolute scale for dys-
function, akin to the FI, so we did not center variables
by their respective means. Lab and clinical data were
compressed together and separately. Compression per-
formance was measured by reconstruction accuracy.
Data were compressed into a latent space using one of
the four algorithms, then mapped back to the inputs
using the inverse transform [33] (excluding the FI,
which is not invertible). An ROC curve was then
trained to map from the reconstruction (PCA, LPCA,
and LSVD) or latent space (FI) to the inputs, provid-
ing an optimal cutting point to reconstruct the original
inputs; this step calibrates the reconstruction. Test
inputs were then compared to their reconstructions
using the Youden index. Note that the Youden index
is a (relatively) neutral measure that does not favour
PCA, which minimizes the MSE, nor LPCA/LSVD,
which minimize the Bernoulli deviance. We progres-
sively increased the size of the latent space to be able
to infer the minimum number of dimensions required

Fig. 2 Principal component analysis (PCA) of binary data is
equivalent to eigen-decomposing the 2D joint deficit histogram.
The first column is the complete histogram, and the remaining
columns sum to the first column (Eq. A6). The first PC is clearly
dominant and is dense, meaning it is nearly equal weights for
each variable (akin to the FI). The eigen-decomposition natu-
rally finds blocks of correlated variables. When it runs out of

blocks, it looks for strong diagonal terms. This causes PCA to
naturally block out like-variables, e.g. lab vs clinical in PC2,
similar to an expert choosing to create an FI out of variables
from the same domain. Values have been transformed for visu-
alization using sign(x)|x|γ , γ = 2/3, see Fig. S16 for the figure
without scaling
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for high-fidelity reconstruction. This yielded compres-
sion plots of increasing fidelity with increasing latent
space dimension.

Generalized linear models (GLMs)

The primary motivation for using a regression model
is to capture conditional effects, including demo-
graphical variables and the combined performance of
multiple features. We used GLMs [48]. GLMs include
linear, logistic, and Cox proportional hazard regres-
sion [18], allowing us to model each outcome variable
with a homologous linear model.

We performed stepwise regression to analyse the
effect of iteratively adding variables on the predic-
tive performance, starting with the model that used
only demographical information. Our motivation was
to determine the optimal number of latent features to
include in our models, which are naturally ordered by
the dimensionality reduction algorithm, PC1 through
to PC55. Stepwise models produced incremental pre-
diction plots for comparison to the compression plots.

We inferred feature importance by building com-
plete models that potentially included all predic-
tors. Feature selection was performed using an L1-
penalized GLM (LASSO), with the penalty selected
using 10-fold cross-validation to pick the mini-
mum mean-squared error (continuous outcomes) or
deviance (binary outcomes) [49]. An L1-penalty
penalizes regression coefficients that differ from 0,
encouraging the model to retain only the most impor-
tant features. Selection frequency was used as a mea-
sure of feature importance.

GLMs used to predict binary outcomes are known
to underestimate the frequency of rare events, even
for datasets with 1000s of individuals (such as ours)
[45]. In Online Resource S2.1, we studied the use of
observation weights to improve the Youden index. We
found that the optimal weight of the ith individual
was,

wi =
{

Frequency of majority class
Frequency of minority class , if i is in minority.

1, if i is in the majority.

This choice of weights is equivalent to the “weighted
exogenous sampling” method [45], where we have
weighted as if the population underlying the sample is
perfectly balanced.

All computations were performed using R version
4.0.1 [48]. Error bars are standard errors unless spec-
ified otherwise. Errors are reported in parentheses,
e.g. 12(3) ≡ 12 ± 3. Confidence intervals are 95%.
We report out-of-sample performance metrics using
10-fold cross-validation for all parametric models,
including compression and prediction. Out-of-sample
means that the compression or prediction algorithm is
completely ignorant of the testing data. This procedure
estimates the expected performance on new, unseen
data, from the same population, independent of the
training set [50].

Results

Input compression

We decomposed and then reconstructed input vari-
ables using various dimensionality reduction tech-
niques. In Fig. 3, we show the out-of-sample Youden
index for the FI, PCA, LPCA, and LSVD, as indicated.
For all, the first dimension dominates and represents
∼30% of the gain in predictive power over guessing
(a guess has Youden index = 0).

LSVD was the most efficient compression tech-
nique, having perfect reconstruction after approxi-
mately 30 latent dimensions. However, this perfor-
mance comes at a large cost in terms of number of
parameters [33], and with respect to computational
resources. Our benchmarks in Online Resource S3.6
indicate that PCA is about 10× faster than LPCA
which is itself 10× faster than LSVD.

The information in the input variables includes
both important, latent, information reflecting an indi-
vidual’s health-state and variable-specific information
which could be considered noise (i.e. not useful for
predicting relevant outcomes). Generally, we see that
the first dimension performs similarly for all methods.
Additional dimensions are needed for accurate com-
pression. The number of dimensions needed ranges
from 30 (LSVD) to all 55 (PCA). This implies the
dataset can be fully represented by a manifold of
new features with dimensionality at most 30. We
also see that clinical data compresses more effi-
ciently than lab data, implying significant correla-
tions between clinical variables. All four dimension-
ality reduction techniques estimated a very similar
first dimension, as indicated by their strong mutual
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Fig. 3 Cumulative compression. Tuning the size of the latent
dimension bottleneck, we inferred the maximum number of
dimensions required to efficiently represent the input data. The
reader should look for two things: (1) the number of components
(dimensions) needed to achieve a relatively high score, and (2)
the slope of the curve — when it flattens we can expect the
features are noise, variable-specific, or otherwise less important.

Logistic SVD compresses the input most efficiently, saturating
at around 30 features. Note the dramatic difference between lab
and clinical compression both for PCA and the FI; the first PC
of clinical data scores as well as 9 lab PCs. PCACLINIC and
FICLINIC use only clinical variables; PCALAB and FILAB use
only lab variables

correlations, shown in Fig. 4. The correlation between
the FI and PC1/LPC1/LSV1 is almost perfect, ρ >

0.95, with nearly identical age and sex dependencies
(Fig. S19). Centering had a negligible affect on results,
only reducing the correlation to ρ > 0.9. This implies
that a very strong signal is present in the data and that
it is very close to the FI, particularly the FI CLINIC.

In Appendix A.2, we show how the equivalence
between the FI and PC1 can arise from the structure
of the joint histogram and provide conditions under
which the FI/PC1 is the dominant dimension.

Feature associations

While compression efficiency identifies the number of
dimensions needed to recover the input data, it does
not tell us how the information is split across features,
nor how that information relates to adverse outcomes.

We explore the flow of information by investigat-
ing the associations between each observed variable
and each latent feature, e.g. the FI, each PC. We used
the metrics described in the “Performance metrics”

section, which range from 0 (no association) to 1 (per-
fect association). A score of 1 means that if we know
the value of the feature then we can perfectly predict
the value of the associated variable. We automatically
picked the Youden index greater than 0, reflecting the
arbitrary direction of the association.

In Fig. 5, we present the Youden index for pre-
dicting the input variables, i.e. compression ability.
We can infer the information content of each fea-
ture through the scores — a higher score implies
more information related to a particular input vari-
able. Similarly, in Fig. 6, we score the association
strength of each feature with each outcome. In both
figures, the inner colour indicates the lower limit of
the 95% CI: lighter values are less significant (white
is non-significant). Consistent with the compression
observations, we see nearly identical patterns between
the FI and the first latent dimension: PC1, LPC1, and
LSV1; note also the similarity to the FI CLINIC. We
have included PCs up to 10 as input variables. We
observe higher PCA dimensions tend to be weaker, but
also more specific predictors.
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Fig. 4 Spearman
correlation of primary
features across algorithms.
The first latent dimension
for either PCA, LPCA, or
LSVD correlated strongly
with the FI and each other,
and correlated more
strongly with the FI
CLINIC than FI LAB. This
implies a strong mutual
signal very close to the FI,
especially the FI CLINIC.
Upper triangle is correlation
coefficient with 95%
confidence interval. Ellipses
indicate equivalent
Gaussian contours [51]

Generalized linear models (GLMs)

The feature associations give an idea of what informa-
tion is in each latent variable but they do not consider
the contributions that multiple latent variables can
make towards prediction. Our GLMs do this, and so
allows us to see how many latent dimensions are
needed to predict outcomes well.

The cumulative predictive power conditional on
all available information up to the Nth PC/LPC/LSV
is given in Figs. 7 and 8. We have included demo-
graphic information as the 0th feature, and are again
estimating out-of-sample performance. We see that
the discrete outcomes (Fig. 7) require few dimensions
to achieve near-maximum performance. Conversely,
continuous outcomes (Fig. 8) require many dimen-
sions. Overfitting appeared to be present in the highest
dimensions, as demonstrated by a drop in performance
as the cumulative number of features becomes larger
(Fig. 7). Overfitting was much worse in the complete
case data, ostensibly due to outcome rarity (Fig. S41).
When choosing the number of PCs to use, the opti-
mal balance between overfitting discrete outcomes
and under-fitting continuous outcomes seemed to be
at approximately 20 latent dimensions for both PCA

and LPCA. It is interesting that LSVD, which was best
at compression, required more dimensions, approxi-
mately 40, to predict continuous outcomes well. This
suggests that LSVD could be susceptible to overfitting
when case data are scarce.

We observed strong similarities between PCA and
LPCA both in compression (Fig. 3) and prediction
(Figs. 7 and 8). In Appendix A.4, we demonstrate that,
under reasonable asssumptions, PCA is the single-
iteration approximation of LPCA, which explains the
similarities.

For specific outcomes, the performance of the
GLM using PCA is shown in Fig. 9, grouped by type.
Consistent with Fig. 7, medical conditions, disability,
and survival (all binary) tend to have low-dimensional
representations and do not benefit from more than a
few PCs: typically PC1 is sufficient. Note the dif-
ference between the FI CLINIC and FI LAB, with
the former being perfectly reconstructed by 2 PCs,
whereas the latter required many more.

In Fig. 10, we highlight selected outcomes which
showed high-dimensional behaviour. These were vari-
ables that we visually observed in Fig. 9 to have
positive slopes up to several PCs (excluding the
FI LAB because it shares input variables with
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Fig. 5 Feature associations
with individual input
variables, i.e. what goes
into each feature. Youden
index (fill colour) quantifies
strength of associations
between features (x-axis)
and health deficits (y-axis);
0, no association; 1, perfect.
Note the similarity of the
FI, FI CLINIC, LPC1,
LSV1, and PC1. Inner circle
fill colour is the lower limit
of 95% CI (white is non-
significant). Higher PCs
show no/low significance

PCA). We include FP as a reference system that is
theoretically high-dimensional [52]. Several of the
high-dimensional outcomes are related to biological
systems that integrate information from many sub-
systems: inflammation and metabolism, as well as

age itself. Note that microalbuminuria is connected to
many different systems as a biomarker of microvascu-
lature damage [41].

In Online Resource S3.3, we repeated the step-
wise GLM using either LPCA or LSVD. We observed
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Fig. 6 Feature associations
with individual outcomes,
i.e. what we get out of each
feature. Association
strength (fill colour)
between features (x-axis)
and adverse outcomes (y-
axis); 0, no association; 1,
perfect. Note the similarity
of the FI, FI CLINIC, LPC1,
LSV1, and PC1. Inner circle
fill colour is lower limit of
95% CI (white is non-
significant). Higher PCs
show no/low significance.
Text on right denotes
accuracy metric used

only minor differences between LPCA and PCA
(Fig. S24). LSVD showed much larger differences
than PCA, in particular it achieved lower over-
all accuracies (Fig. S25). In all cases, our qualita-
tive results remain unchanged. We also considered

non-linear behaviour by including quadratic and inter-
action terms between the PCs but found no improve-
ment and a tendency to overfit (Fig. S22), suggesting
that the linear model is optimal for the available
data.
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Fig. 7 Cumulative
prediction plot for discrete
outcomes (GLM). 0th
dimension is demographic
information. Increasing the
number of features initially
improves prediction but
eventually it gets worse due
to overfitting. LSVD
performs notably worse than
PCA and LPCA. Youden
index: higher is better

Robustness analysis

PCA defines a particular linear transformation (rota-
tion) between the original variables and a new “latent”
space. An important question is reproducibility of this
latent space: can it be robustly estimated from the
data?

We bootstrapped the sample to estimate the robust-
ness of the linear transformation that rotates the data

into PCs. The resulting rotation matrix up to the 10th
PC is displayed in Fig. 11. The exact values are in
Table S7. Note the overall sign of each PC is arbi-
trary [18]. We observed that the first 4 PCs were
reliably estimated, 5 and 6 were marginally robust;
the remaining PCs were too noisy to be consistently
estimated. The loss of robustness could be due to PC
features swapping order due to small changes in their
associated eigenvalues (see Fig. 12), which could be

Fig. 8 Cumulative
prediction plot for
continuous outcomes
(GLM). 0th dimension is
demographic information.
Increasing the number of
features improves prediction
monotonically. LSVD
performs notably worse
than PCA and LPCA. MSE
is on standarized scale;
therefore, R2 = 1 − MSE.
MSE: lower is better
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Fig. 9 Improvement in predictive power as more PCs are
included, grouped by outcome type (GLM). Coloured lines
indicate specific outcomes, and black line indicates the mean
for each group. For most outcomes, the performance stops
improving after a few PCs, hence why we have truncated at

PC6. The exceptions are explored in Fig. 10. Note: legend is
sorted from best (top) to worse (bottom) performance of the
PC6 model. See Fig. S21 for the complete plots without trunca-
tion. Subplots represent outcomes grouped by type, as indicated
(“a–f”)

addressed by a matching algorithm. On the other hand,
the first 4–6 PCs appear to be robust and generalizable
across the sample population.

PC1 is very close to the full FI (lab + clinical),
as shown in the “Input compression” section, and

we observe in Fig. 11 that PC1 has nearly uniform
weights for each variable, explaining the underly-
ing similarity. Both the FI and PC1 are (nearly)
unweighted averages of deficit variables. PC2 sug-
gests that the next most important term to the full
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Fig. 10 Improvement in predictive power as more PCs are
included, high-dimensional outcomes (GLM). Outcomes were
hand-picked variables based on requiring many PCs to achieve
maximum performance. The FP was included for compari-
son. We tend to see continual improvement for the discrete

and continuous outcomes, excluding the FP (up to ∼10). Age
appeared to be the highest dimensional. Subplots represent
high-dimensional outcomes grouped as continuous, (a), or dis-
crete, (b) along with age as the lone outcome, (c)

FI is a contrast term splitting lab and clinical inputs
into their respective domains. PC3 has a similar
structure of contrasting domains of blood pressure and
metabolism. In Online Resource S3.4, we confirmed
the robustness of the first 3 PCs to choice of variables
by randomly selecting variable subsets of size 30, the
remaining PCs did not appear to be robust (Fig. S27).

The corresponding second moments — i.e. eigen-
values — of the PCs are given in Fig. 12. A bilinear
structure was apparent in the log-log plot. In time
series analysis, others have attributed this PC struc-
ture to fractal dimension [53], indicating a potential
connection to complexity [54]. Values curved below
the second line after approximately 20 PCs for the

complete data, around 15 for the clinical data, and
around 12 for the lab data. These values correspond
to the end of the optimal-model regions in Figs. 7 and
8 (represented as bands in Fig. 12); the curved region
may therefore provide a useful heuristic for identify-
ing less relevant PCs that exacerbate overfitting.

Note that the PC rotation does not have to be robust
for it to be useful, for example PCA can be trained on
one sample and used on another. Differences between
the samples would then change the eigenvalues (via
Eq. A8) and PC ranks. Practically, this means perform-
ing feature selection after PCA, either by inspecting
the eigenspectrum (e.g. Fig. 12) or by using an auto-
mated algorithm such as LASSO [49].

Fig. 11 PCA robustness. Robustness of the PCA rotation was
assessed by randomly sampling which individuals to include
(i.e. bootstrapping, N = 2000). Left side are lab variables; right
are clinical. Inner circle fill colour is 95% CI limit closest to
0. Grayed out tiles were non-significant. The first three PCs
were quantitatively robust. We see the robustness drops with

increasing PC number. The global sign for each PC was mutu-
ally aligned across replicates using the Pearson correlation
between individual feature scores. In Fig. S27, we assessed
robustness by randomly sub-sampling input variables and again
observed that PCs 1–3 were robust
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Fig. 12 PCA second
moments (eigenvalues) with
bootstrapped standard
errors (N = 2000). Log-log
scales. Note the bilinear
structure. Banded region is
optimal performance region
(±1 error bar from best
using Figs. 7 and 8). In all
three variable sets,
eigenvalues curved away
from second line just before
overfitting started

Age stratification

We investigated the effect of cohort age on our results.
The joint 2D histogram tended to saturate (increase in
magnitude) with age, although the qualitative structure
of the histogram was stable (Online Resource S3.5).
This implies that the PCA features — which are
derived from decomposing the 2D histogram — do
not change much with age. The increasing saturation
does increase the relative contribution of the first PC
with age, however. The first eigenvalue increased with
increasing age quartile from 0.352(3) for ages 60–65
to 0.330(3) for ages 65–72 to 0.405(3) for ages 72–81
to 0.473(3) for ages 81+, as seen in Fig. S30.

To investigate a potential age effect further, we split
the population at the median age (72) then redid
the analysis using a young cohort (age < 72) and
an old cohort (age 72+). (Note that we excluded
demographical variables in this comparison because
the baseline model, i.e. covariates as the only pre-
dictors, may not be equally powerful for both
cohorts, confounding direct comparison.) Com-
pression was similar for both cohorts (Fig. S31).
Prediction using the GLM, however, was notably
different (Fig. S32). For discrete outcomes, the
cohorts scored similarly, the young cohort had a
maximum Youden index of 0.333(15) compared
to the older cohort which scored 0.326(13). For

continuous outcomes, the young cohort per-
formed much worse with a minimum MSE of
0.134(20) compared to the older cohort with
0.055(19).

We summarize the variable-specific compression
and prediction using GLMs in Online Resource S3.5.
The results were qualitatively similar, indicating
robustness with respect to age. The GLM Youden
indexes for compressing each predictor showed a
stronger focus on predicting creatinine and BUN in the
older cohort than in the younger cohort. The younger
cohort tended to prioritize other predictor variables,
e.g. glucose, HDL, and iron (Fig. S33). The GLM
scores for predicting outcomes also showed microal-
buminuria, and to a lesser extend gait, were better
predicted in the older cohort (Fig. S34). Most of the
differences we observed between the young and old
cohorts were strongest in the higher PCs, and this
reflects the lack of robustness of the higher PCs that
we observed in Fig. 11.

Discussion

The first latent dimension “is” the frailty index

We performed dimensionality reduction on binarized
health data encoded as normal (0) or dysfunctional (1).
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The first dimension of each algorithm, PCA, LPCA,
and LSVD, indicated a strong signal with general pre-
dictive power both for deficit compression and adverse
outcome prediction. This first latent dimension cor-
related almost perfectly with the FI (Spearman ρ >

0.95), reproduced the same gender and age trajectories
as the FI (Fig. S19), and had very similar associations
(Figs. 5 and 6).

What underlying phenomenon is this first latent
dimension capturing? The FI is a measure of frailty
[21], making it the primary suspect. Indeed, frailty
is strongly associated with adverse outcomes [5] and
the first latent dimension strongly predicted almost
all outcomes. Specifically, the first latent variable
predicted the five key frailty outcomes: exhaustion,
weakness, physical inactivity, gait, and weight (BMI).
Frailty has been strongly associated with inflam-
mation, total and HDL cholesterol, hyperglycemia,
and insulin resistance [55]. Consistent with this, we
observed a (weak) relation between the first latent
variable and HDL/total cholesterol, a (weak) rela-
tionship with the inflammation biomarker CRP, and
a (moderate) relationship with glucose and glycohe-
moglobin. We saw stronger relationships with clinical
measures: IADL/ADL disability, exhaustion, and gait,
all three of which are important signs/symptoms of
frailty [55]. IADL/ADL disability is known to be
strongly related to frailty and specifically the FI [56].

What is behind the approximate equality of FI and
PC1? We see in Fig. 2 that the 2D histogram for PC1
is approximately a large block of uniformly correlated
variables. In Appendix A.2, we show how an exact
block structure leads to PC1 ≈ FI and that the FI
becomes an increasingly good approximation for the
information in the entire 2D histogram as the number
of variables increase — saturating past approximately
30 variables. Indeed, others have reported moderate-
to-strong correlations between all variables and equal
associations/weightings to the first PC [27].

We hypothesize that the selection criteria for the
FI [6] ensure that the joint histogram has this uni-
versal correlation structure between many variables:
all deficit variables must (1) be related to health
status, (2) increase in prevalence with age, (3) can-
not saturate in youth, and (4) should contain “at
least 30-40” variables [6]. These conditions are likely
to lead to moderate-to-strong correlation between
deficits due to their mutual age dependence through an

individual’s biological age (overall health state) [57].
These correlations then lead to PC1 � FI.

To summarize, the FI is an excellent summary
measure for a large collection of moderate-to-highly
correlated health deficit variables. That is, the FI acts
as a “state variable” which summarizes the health state
of an individual [20]. Under such conditions, the FI
approximately equals PC1 and can describe the col-
lection of health deficit variables with little residual
information, as has been empirically observed [30].
In turn, PC1 approximates the more appropriate loss
function provided by LPCA (Appendix A.4). The ease
with which the FI, PCA, and other methods detect
a very similar primary signal suggests that any good
dimensionality reduction algorithm would identify it
as the dominant signal in health deficit data. This sig-
nal predicts important outcomes and can be easily
estimated via the FI or PC1.

PCs represent scales of dysfunction

PCs should be interpreted as building blocks consist-
ing of coarse grained scales that can be added together
to efficiently represent common patterns of dysfunc-
tion — adverse outcomes and health deficits. While
others have discussed the biological significance of
individual PCs, for example as dietary patterns [28] or
up/down inflammation regulators [26], it is unlikely
that the PCs in the present study represent specific
diseases or adverse conditions (excluding PC1). This
is because the PCs must be statistically independent,
while the first PC already represents generic dysfunc-
tion akin to the FI [4, 5]. Hence, any biological pattern
of dysfunction using PCA should include a non-trivial
contribution from PC1. Therefore, PCs past PC1 are
unlikely to represent specific pathways of dysfunction.

Instead, we should look for the minimum number
of PCs to combine to construct a known pattern of dys-
function. For example, we can cross-reference Fig. 11
against upticks in Figs. 9 or 10. Low PC1 plus low PC2
gives global clinical dysfunction with agnostic lab,
which is tantamount to the FI CLINIC. This explains
why PC1 plus PC2 reconstructed the FI CLINIC. Low
PC1 plus high PC2 gives quasi-global lab dysfunc-
tion with agnostic clinic, with strong cardiovascular
dysfunction, such as would be seen in metabolic syn-
drome [58]. Adding low PC3 would give metabolic
dysfunction alone, and this explains why inclusion of
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PCs 1–3 gives a sudden improvement in BMI, obe-
sity, and diabetes prediction. If we then add high PC4,
we could get dysfunctional glucose metabolism alone,
which explains the uptick in diabetes prediction with
inclusion of PC4 [41, 59]. PCA provides an efficient
coarse graining procedure such that many common
patterns of dysfunction are efficiently represented as
sums of PCs.

How does PCA achieve this? PCA identifies
domains of variables likely to be mutually deficient,
i.e. strongly correlated. In this manner, PCA coarse
grains by concatenating domains in a PC (e.g. PC
1 contained all domains), approximating them as
a block, and then in the next PC it can contrast
those domains with opposing signs to account for
the stronger within-domain correlations than between-
domains (e.g. PC 2 splitting lab and clinical). In
this way, the PCs encode domain-specific informa-
tion, similar to the way experts have manually created
domain-specific FIs [23]. Understanding health using
multiple domain-specific FIs may be helpful for inter-
pretability but could also make the analysis vulnerable
to issues related to collinearity, such as unreliable
regression coefficients [18]. In contrast, PCA is high-
throughput, and PCs are uncorrelated, making PCA
a better foundation for quantitative approaches —
including pre-processing [24] before mapping into
domains.

An alternative route to improving interpretability is
through formal latent variable modelling. For exam-
ple, grade of membership simultaneously infers health
“profiles,” along with individual scores for each pro-
file, which are similar to PC scores [35–37]. The
primary advantage that we see in PCA is that it com-
presses information into the lowest PCs by system-
atically estimating the direction of highest variance,
followed by second highest, etc. This yields a set of
optimal representations [18], and makes it particu-
larly easy to quantify the information lost by picking
a smaller representation. For example, Fig. 3 shows
the efficiency of each representation from 1 dimension
up to the number of input dimensions. PCA also has
several practical advantages over formal latent vari-
able models: it is simple, fast, convex, easily tuned,
reversible, and standard in statistical software pack-
ages, such as R [48]. Because of this, PCA can be
easily integrated into an existing analysis pipeline as a
pre-processing step.

PCA appears to generalize the action of the FI. The
FI treats all health deficits as indistinguishable, such
that you can pick any 30+ and expect to get the same
summary health measure (subject to selection criteria)
[6]. PC1 � FI adopts indistinguishability of deficits
from the FI. PC2 is able to “see” (discriminate) the
difference between lab and clinical deficits, but can-
not distinguish individual lab variables from lab nor
clinical from clinical. For example, we expect PC1
and PC2 will change little if a new admixture of lab
and clinical variables are used — while higher PCs
will change more. PC3 is able to “see” the difference
between metabolic, heart-related vs other deficits, and
so forth for higher PCs. Within each PC, the exact
variables used should be unimportant, as long as they
come from the same domains.

Domains in lab vs clinical data

We see that dimensionality reduction algorithms treat
clinical and lab data domains differently, and are sen-
sitive to domain boundaries. Strongly mutually depen-
dent variables form block-like domains in the joint
histogram, which can be efficiently represented by a
single latent dimension, making them preferred targets
of PCA (and LPCA).

Clinical variables were strongly associated with a
single latent variable whereas lab variables spanned
more dimensions. For example, comparing the FI
CLINIC to FI LAB in Fig. 9: the FI CLINIC was
almost completely described by 1 PC whereas the
FI LAB required at least 5. Inspecting the 2D his-
togram (Fig. 2), we can see that the clinical data
have stronger inter-dependencies than the lab. Pre-
vious research has shown that clinical variables are
sufficiently compressed by a single dimension [30],
whereas lab variables need at least two [31]. We did
see an indication of high-dimensional clinical data in
the pooled continuous outcome prediction of clinical
PCA, which improved up to 5–6 PCs, probably due to
improvements in CRP, BMI, gait, and/or age (which
were high-dimensional).

Clinical deficits tend to accumulate over time and
are efficiently described by the FI CLINIC. In con-
trast, the lab data are more complex, reflecting the
diversity of biological systems the lab data represent,
for example: metabolic (e.g. cholesterol and glucose
[60]), immune (e.g. neutrophils [61] and CRP), renal
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(e.g. creatinine and BUN [62]), and cardiovascular
(e.g. blood pressure [62]). Ostensibly, there are too
many directions for dysfunction to proceed in to be
completely captured by a single summary measure
such as the FI LAB alone. For example, an individ-
ual may be prone to metabolic dysfunction, as indi-
cated by dysfunctional glucose and glycohemoglobin,
whereas another may have a weak heart, as indicated
by dysfunction blood pressure, or weak kidneys. Why
should these individuals accumulate (and propagate)
dysfunction, or damage, in the same way? Our results
indicated that they do not; multiple dimensions of PCs
are needed to represent the diverse phenotypes of dys-
function captured by lab data. In contrast, the clinical
data appears considerably more homogeneous.

Clinical data therefore seem to contain more
generic (albeit crucial) information than lab data,
with only a few dominant PCs in the former but
more PCs needed in the latter. This may reflect the
improved resolution of biological dysfunction in lab
data. For example, lab data can resolve heart dis-
ease from hypertension vs from chemotherapy tox-
icity, but the clinical consequences of heart disease
are the same either way. Inclusion of molecular data,
such as metabolomics, proteomics, or genomics, in
future studies would clarify whether this trend towards
more PCs continues as biological resolution is further
increased.

The underlying univariate structure of the clini-
cal data means that when we calculate the FI with
equal weightings we are favouring the strongly corre-
lated clinical deficit data over the weakly correlated
lab data. PCA targets large, dense blocks of highly
correlated variables. In the present study, the clinical
data formed a dense block of the same size as the lab
data and were therefore preferred targets. Conversely,
we expect that a very large block of weakly corre-
lated variables would be a preferable target over the
relatively small number of clinical variables. Thus, if
we had included an exceptionally large domain, e.g.
“omics” data with thousands of features, then it could
dominate any much smaller domain. How would we
know if there is a problem? We can look for blocks in
the 2D joint histogram: a large block indicates strong
mutual dependence, which will drag most algorithms
towards it. A two-stage, hierarchical dimensionality
reduction procedure, homologous to the “bifactor”
model of [31], would mediate such an effect, and
would be a good starting point for “omics” data. One

could do PCA on each domain, take the most impor-
tant PCs from each domain, and then perform PCA on
all of the top PCs.

The dimensionality of integrative systems

“High-dimensional” outcomes required many PCs to
fully predict. If an outcome relies on integrating infor-
mation from many domains then we should see an
incremental improvement as we move from PC1 to
higher PCs. For example, prediction of age continu-
ally improved until about PC20. This is indicative of
a high-dimensional, integrative process that accumu-
lates dysfunction over several domains/scales and we
therefore surmise, many different pathways of dys-
function. Stated equivalently, these are systems that
function in many different ways.

CRP and chronological age showed the high-
est dimensionality, ostensibly integrating informa-
tion from many domains. CRP is an inflammation
biomarker indicative of altered cellular communica-
tion, the latter has been called an “integrative hallmark
of aging,” meaning that it indicates a phenotypic accu-
mulation of damage [1]. These outcomes may be indi-
cators of accumulated damage across domains and,
ostensibly, scales. The approximately 20 PCs needed
by age represents information integrated over all
domains, probably leaving only noise in the remain-
ing PCs (Fig. 12). In regressing against age, we are
generating a biological age model [57]. Such a model
is effectively condensing 20 dimensions of age-related
decline into a single measure. This explains why there
exists many partially overlapping biological ages [12,
13]: each biological age represents a different one-
dimensional projection from a high-dimensional latent
space. All of these ages contain overlapping contribu-
tions from the first latent dimension due to its strong
explanatory power.

In contrast, medical conditions, ADL/IADL dis-
ability, survival, and FP all seem to have one dominant
dimension: PC1. For these outcomes, the first PC pre-
dicted almost as well as including all 55. This means
that the only dimension we know is useful for pre-
dicting these outcomes is the dimension representing
generic health deficits. This implies that our knowl-
edge of these outcomes lies on a line: things go wrong
in just one direction.

Money difficulty and difficulty preparing meals,
both IADL, were notable exceptions that depended on
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higher PCs, notably PCs 6–8. These were the most
cognitive-intensive clinical outcomes, which suggests
that cognitive decline has its own domains of dysfunc-
tion captured by later PCs, and is consistent with what
others have observed via factor analysis [63]. This
highlights the critical difference between outcomes
which appear to integrate information across multi-
ple scales/domains, such as chronological age, versus
those that depend on specific domains beyond a low
rank PC representation, such as difficulty preparing
meals. The former should show continual improve-
ment as the number of PCs increases whereas the latter
should show sudden improvement when a specific PC
is included (e.g. compare the curves for predicting
age versus difficulty preparing meals, iadl mealDIS in
Fig. 10, the former improves with each additional PC).

Practical considerations

The FI’s ability to effectively compress the salient
information within a set of binary health deficits
appears to be due to a dominant underlying signal that
is readily identified by various dimensionality reduc-
tion techniques. PCA is the most common, robust,
simplest, and fastest. LPCA is a more complex algo-
rithm that can enhance compression without loss of
predictive power. LSVD is too focused on compres-
sion to yield good predictive features; it is also much
slower. However, any of these techniques can be used
to extend the dimensionality of the FI.

A critical aspect of our central hypothesis — that
efficient representations of health deficits are effi-
cient representations of adverse outcomes — is that
biomarkers must be converted to a standardized dys-
function scale. Sample-specific scales, such as the
standard deviation, run the risk of propagating sam-
ple population idiosyncrasies or healthy variation. In
contrast, deficit thresholds have been expertly tuned.
Applying PCA directly to continuous biomarker data
without converting to a standardized dysfunction scale
may result in features that primarily capture healthy
variation and/or have no clear connection to adverse
outcomes.

We have focused on dimensionality reduction using
compression algorithms, which do not depend on any
specific outcomes. Dimensionality reduction could
also be used with specific outcomes [19], or could
simply be used with some of the adverse outcomes as

input variables — for example medical conditions like
diabetes and heart disease [40].

As we observed with LSVD, while compression
seeks an efficient representation of the input it may not
also be efficient for prediction. We hypothesized that
efficient representations of health deficits would also
be efficient representations of adverse outcomes. It is
thus a surprise that we observed LSVD compressing
so well, given its relatively poor predictive perfor-
mance. Since LSVD has many more parameters than
either PCA or LPCA, this could be a manifestation of
overfitting to the input data, i.e. finding population-
specific features rather than health-specific
features.

Both PCA and LPCA are designed to handle cross-
sectional data, although we expect they will also
be useful for longitudinal data. Both are based on
reversible linear transformations which preserve infor-
mation, and hence they can be applied to new popula-
tions or measurement waves without loss of informa-
tion. If the PCs/LPCs are expected to remain constant
over time then we can simply pick a convenient wave
to compute the transformation, probably the first,
then apply the transformation to all other waves. This
would be a viable approach in the present study pop-
ulation, since we observed that the PC transformation
did not depend on age (Online Resource S3.5). If
the transformation changes between waves, then we
would suggest to first combine the waves to learn a
shared transformation, then apply it separately to each
wave.

What additional utility does PCA provide over the
FI? Each of the multivariate dimensionality reduction
algorithms was at least as good at predicting any given
outcome as the FI was. It is also clear from step-
wise regression that truncated PCA can help to avoid
overfitting; we can surmise that it would be particu-
larly useful for avoiding the “curse of dimensionality”
(when the number of predictors meets or exceeds
the number of individuals). The only downside to a
multivariate approach is the increased computational
complexity, which is minor for PCA.

How do we know the right number of features
(PCs) to use? Conventionally, one looks for an
“elbow” in the eigenspectrum, indicating a sudden
drop in PC information content, or one picks the opti-
mal number that maximizes prediction accuracy for
a desired outcome [18]. PCs with small eigenvalues
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are, by our choice of normal/dysfunctional scale,
minor corrections to the 2D deficit histogram which
we hypothesize are unimportant for predicting adverse
outcomes. In the present study, we observed that the
eigenspectrum had a distinct bilinear structure in the
log-log plot, and inferred that when eigenvalues drop
below the second line, it is an indication of a drop in
PC importance. Others have noted small eigenvalue
PCs were significant predictors of mortality [24]; we
hypothesize that these PC eigenvalues would lay on
the second line (but not below). Our proposed method
of finding the “elbow” can be used to automatically
identify the number of PCs to use without needing
to refer to any particular outcome. Other fields have
shown that there is an unmet need for unbiased PC
selection criteria such as ours [29].

We observed little change in PCA performance
with age. One minor change was in the relative impor-
tance of certain biomarkers/outcomes, as indicated by
the PC order in which they appeared. The primary age
effect was a monotonic increase in overall deficit fre-
quency with age, a phenomenon that is well known
from the FI [64]. Although the 2D histogram thus
became increasingly saturated with age, normalizing
by the mean FI showed that the histogram structure
was not changing, only the global deficit frequency.
This suggests that the canonical pathways of dysfunc-
tion do not change with age, rather they saturate.

We note a few sources of error. Data imbalances can
negatively affect performance measures and model
fits; hence, we focused on the Youden index and used
a weighting scheme for the GLM. Most of the clinical
variables used as inputs were related to physical activ-
ity which may skew our interpretation, although other
researchers have used a similar set [40]. Our clini-
cal variables were self-reported rather than observer
assessed, which may affect performance [65] although
it is unclear how [23]. The main weakness of this
study is our use of a single population. We used
cross-validation and performed a robustness analysis
to estimate precisely the effects for the sample popu-
lation, but there may be study or population–specific
effects in our results. However, the complete case
data provided a subpopulation of younger, healthier
individuals, and yielded similar conclusions (Online
Resource S4).

We have also neglected to include social vulnerabil-
ity deficits, which contain additional predictive power

over the FI alone [66], although we did include part-
ner status, education, and income as covariates. It is
curious to consider how PCA would handle grouping
domains of information such as social vulnerability
and observer vs self-reported health deficits — we
expect it would modify the PCs to find these new
domain boundaries.

Future directions

Our work has been motivated by the need for estimat-
ing summary measures of health from new domains
and with multiple dimensions. PCA may provide
a useful extension of the FI to higher dimensions.
Other approaches are also worth exploring, such
as non-negative matrix decomposition [67], varia-
tional autoencoders [68], or kernel PCA [69]. Nested
approaches may be useful for dealing with domains
with many variables e.g. “omics” data. Our ability
to robustly estimate latent dimensions also provides
an opportunity for more interpretable latent variable
modelling, for example structural equation modelling
or factor analysis [31]. The stability of the PC rotation
with age may also make it a useful pre-processing step
for longitudinal analysis, such as for dynamical mod-
elling. PCs can reduce dimensionality and likely have
simplified interactions.

PCA appears to have additional utility. If the
“elbow” we observed in the PC spectrum is caused by
a transition from signal to noise, it may be useful for
denoising, which has been identified as an important
issue with epigenetic clocks [24].

Conclusion

We compared several dimensionality reduction algo-
rithms for their ability to compress health deficit data
and predict adverse outcomes. The FI, PCA, LPCA,
and LSVD all identified the same dominant signal.
This demonstrates and explains the FI’s uncanny abil-
ity to predict adverse outcomes. We found that the
additional dimensions estimated by PCA were helpful
for better capturing health outcomes, particularly inte-
grative systems such as inflammation, metabolism,
and chronological age. Such systems were sensitive to
many dysfunction pathways, domains, or scales. PCA
is a simple tool that can help researchers to identify
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and efficiently represent multidimensional biological
systems in aging research.

Appendix. Binary PCA

We seek an efficient representation for binary health
data: normal (0) or deficit (1). Equivalently, we are
seeking (1) a basis set, (2) a set of features, or (3) a
set of composite health measures. Representation effi-
ciency is commonly measured by compression. Com-
pression is the ability to take a set of p input variables,
reduce (“compress”) them into k < p latent vari-
ables, and be able to reconstruct the original p input
variables from these k latent variables. Compression
fidelity is measured by a loss function that compares
the original input variables to the reconstructed inputs.

Each dimensionality reduction technique is the
optimal solution to a particular choice of loss func-
tion. If we require independent (orthogonal) features
and minimize the mean-squared error then the solution
is given by PCA (see below). The mean-squared error
is not ideal for binary data, however, since we only
need to know whether a variable is larger or smaller
than 0.5. More appropriate choices for binary data lead
to LPCA [33] and LSVD [33, 34]. The performance
gains of these methods over linear PCA have been
modest [33, 34], and may not justify the increased
algorithmic complexity. When we refer to PCA, we
mean conventional, linear PCA.

In finding the directions of maximum variance,
PCA decomposes the covariance matrix into its eigen-
vectors. For binary healthy/deficit data, the covariance
matrix takes on a special meaning. The (uncentered)
covariance matrix is equivalent to the 2D pairwise
joint deficit frequencies, with the diagonal corre-
sponding to the individual variable’s marginal proba-
bility (i.e. deficit frequency). Binary PCA effectively
compresses all of the marginal and pairwise deficit
probabilities into a set of features of decreasing impor-
tance. We refer to each feature as a latent dimension.

A.1 Problem formalization

We seek an orthogonal basis set of features to effi-
ciently represent the data. Orthogonality ensures that
features are independent (uncorrelated) and that each
individual has a unique representation in terms of the
basis [70].

Let �φi be the ith basis feature, we want to mini-
mize the reconstruction error between the N × p data
matrix, X, in its original state and after bottleneck-
ing through the (latent) feature space of size k ≤ p.
The representation of the ith individual and j th deficit
from our data in the new space is given by:

X̂ij ≡
k∑

n=1

Zinφnj , (A1)

where Zin represents an individual’s feature score and
X̂ij is our best estimate of the reconstructed input data,
Xij .

Using the orthogonality of the �φi , we estimate the
feature scores using the inner product,

Zin =
p∑

j=1

φnjXij (A2)

thus,

X̂ij =
p∑

j=1

k∑
n=1

φnjXijφnj

=
p∑

j=1

Xij

k∑
n=1

φnjφnj

=
p∑

j=1

Xij

k∑
n=1

UjnU
t
nj

=⇒ X̂ = XUUt (A3)

where U is the p × k matrix formed by having ith col-
umn equal to the ith basis, �φi , and Ut is the transpose
of U .

For simplicity, convexity, and robustness, we
assume the mean-squared error function; hence, we
have:

min
{ �φi }

N∑
i=1

p∑
j=1

(
Xij − [UUt �Xi·]j

)2 with
p∑

j=1

UjiUjk = δik. (A4)

This is the Pearson formalism of PCA (where the
mean has not been subtracted) [33]. Z ≡ XUt is the
PC score matrix and U is the rotation matrix. This
formalism can be solved sequentially for each �φi and
is equivalent to picking the rotation of the data such
that the first direction, Zi1, has the maximum sec-
ond moment (eigenvalue), the second direction has the
second largest, and so forth [18].
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The solution to Eq. A4 is found by eigen-
decomposition of XtX [18]. Each of the columns of
U , �φi satisfies

1

N
XtX �φi = λi

�φi where �φi ≡ U·i (A5)

where λi is the ith eigenvalue and XtX/N is the 2D
histogram of joint frequencies of the binary input vari-
ables, with the diagonal equal to the 1D frequencies.
This implies (using XtX ≈ XtX̂, Eqs. A3 and A5),

1

N
XtX ≈

k∑
i=1

λi

( �φi ⊗ �φi

)
(A6)

with equality when k = p. ⊗ denotes the outer/tensor
product and the terms are sorted by decreasing
strength. Intuitively, we are forming the 2D histogram,
XtX/N , then decomposing it into a set of rank 1
matrices — i.e. square blocks — sorted by relative
contribution; Fig. 2 illustrates the process for our
dataset.

The principal components (PCs), P ≡ Z, are
defined as the initial data transformed (“rotated”) into
the latent space,

Pij ≡
p∑

k=1

XikUkj (A7)

using the eigen-decomposition, Eq. A5, we can show
that the norm of each PC is determined by its eigen-
value (substituting U for φ),

1

N

∑
k

∑
j

Xt
nkXkjUji = λiUni

=⇒ 1

N

∑
n

∑
k

∑
j

Xt
nkXkjUjiUnm =λi

∑
n

UniUnm

=⇒ 1

N

∑
k

PkmPki = λiδim (A8)

hence the second moment of each PC determines
its eigenvalue, λ, and therefore its order and rela-
tive importance. The sum of the second moments is
conserved because U is an isometry [70].

A.2 Block histogram

There is a special 2D joint histogram pattern for which
the first PC is equal to the FI for both logistic [33] and
linear PCA (scaled by an irrelevant constant). When a

uniform diagonal is on top of a dense, uniform, off-
diagonal, the FI is the dominant eigenvector and is
therefore the first PC.

More precisely, suppose the 2D joint frequency
histogram, XtX/N , is given by:

1

N
XtX =

⎡
⎢⎢⎢⎢⎣

a b . . . b

b a
...

...
. . . b

b . . . b a

⎤
⎥⎥⎥⎥⎦ (A9)

that is, the diagonal is constant, a, and the off-
diagonals are also constant, b. This is a circulant
matrix [71]. Note that a ≥ 0, b ≥ 0, and a ≥
b, because they are deficit frequencies ((XtX)ij =
N〈xixj 〉 for binary variables xi and xj , clearly 〈x2

i 〉 ≥
〈xixj 〉 so a ≥ b because a = 〈x2

i 〉 and b = 〈xixj 〉,
where 〈xi〉 is the mean of xi). The eigenvalues of this
circulant matrix are [71]:

λk = a − b + b

p−1∑
j=0

(
exp

(
2π

p
ki

))j

(A10)

where k ∈ [1, p] is an integer and p is the number
of columns in X (i.e. the number of variables); i ≡√−1. If k �= p, the sum is a geometric series which
converges to [72],

λk = (a − b) + b

⎛
⎝1 − exp

(
2π
p

pki
)

1 − exp
(

2π
p

ki
)

⎞
⎠

λk = a − b k �= p (A11)

If k = p, we instead have,

λp = a − b + b

p−1∑
j=0

(exp (2πi))j

λp = a + (p − 1)b (A12)

because a, b ≥ 0 and a ≥ b we have that λp must
be the first (largest) eigenvalue (assuming b > 0,
otherwise it will be a tie).

The associated eigenvectors are given by [71],

Ukl = 1√
p

e
− 2π

p
ikl (A13)

where k and l are integers. From Eq. A12, we know
the first eigenvector is,

Upl = 1√
p

. (A14)
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Using Eq. A7, we can calculate the first principal
component,

P·1 =
∑
j

1√
p

Xij

= √
p

1

p

∑
j

Xij

= √
p · frailty index, (A15)

which is a constant times the FI. Hence if the joint
histogram has the form of Eq. A9, the FI will coin-
cide with the first PC. In the next section, we show the
conditions under which the first PC is sufficient.

A.3 How well can we approximate the histogram?

The 2D histogram contains all pairwise frequencies
(off-diagonals) and individual frequencies, making it
an important summary of the information we know
about the deficit statistics. How well does the first
eigenvalue/eigenvector pair approximate the complete
2D histogram, given it has the special structure of
Eq. A9?

From Eq. A6, we know that the eigenval-
ues/eigenvectors approximate the 2D histogram as:

1

N
XtX ≈

k∑
i=1

λi

( �φi ⊗ �φi

)
(A16)

with equality when k is equal to the number of vari-
ables, p (equal to the number of columns of X). Since
the model is linear, we can summarize the mean-
squared error using the coefficient of determination,
R2, and expect R2 = 0 for a useless reconstruction
and R2 = 1 for a perfect reconstruction. Specifically,

R2 = 1 −
∑

i

∑
j

(
(XtX)ij /N−∑k

l=1 λl

( �φl⊗�φl

)
ij

)2

∑
i

∑
j

(
(XtX)ij /N

)2 . (A17)

Using this, we compute the accuracy of the first eigen-
value/eigenvector pair in approximating the full 2D
histogram,

R2 = 1 −
∑

i

∑
j

(
(XtX)ij /N − ∑1

l=1 λl

( �φl ⊗ �φl

)
ij

)2

∑
i

∑
j

(
(XtX)ij /N

)2

= 1 −
∑

i

∑
j

(
(XtX)ij /N − (a + (p − 1)b)(1/p)

)2

∑
i

∑
j

(
(XtX)ij /N

)2
,(A18)

and substitute in the special form for XtX/N ,

R2 = 1 −
∑

i

∑
j �=i

(
b − (a + (p − 1)b)(1/p)

)2∑
i a2 + ∑

i

∑
j �=i b2

+
∑

i

(
a − (a + (p − 1)b)(1/p)

)2∑
i a2 + ∑

i

∑
j �=i b2

= 1 − p − 1

p
(1 − b/a)2 1

p(b2/a2) + (1 − b2/a2)

(A19)

where in the last line we emphasize there are only two
tunable parameters: b/a is a measure of correlation
strength and p is the number of variables. Both 0 ≤
a ≤ 1 and 0 ≤ b ≤ a are constrained because X is
composed of binary variables.

There are two limits of interest. First, for b > 0 if
we take b → a,

lim
b→a

R2 = 1 − p − 1

p2

(a − b)2

b2

= 1 (A20)

this corresponds to a 2D histogram of perfectly depen-
dent variables (which would be a rank 1 matrix). The
other limit is taking a large number of variables with
b > 0,

lim
p→∞ R2 = 1 − 1

p

(a − b)2

b2

= 1 (A21)

which corresponds to an infinitely large 2D histogram.
In both cases, R2 = 1 and the first eigenvector —
equal to the FI — is sufficient to perfectly estimate
the 2D histogram and hence sufficient to completely
describe the first- and second-order statistics. It is
interesting to note the compatibility of the two lim-
its which imply that getting a large, but finite, p and
having b close to, but not equal to, a is likely to give
R2 ≈ 1.

In Fig. 13, we plot Eq. A19 for several values of
the two free parameters, b/a and p. Nearly perfect R2

is achieved for fairly modest values of b/a when p

is sufficiently large. Interestingly, there is an apparent
diminishing return for increasing p with an elbow at
p ≈ 25, this is comparable to the 30+ deficits rule for
the FI [6]. The 2D joint histogram in this study had a
median diagonal value of a = 0.20 and median off-
diagonal value of b = 0.04, giving b/a = 0.22 (p =
55; Fig. 2). We would then expect an ideal case to have

1708



GeroScience (2023) 45:1687–1711

Fig. 13 Special joint
histogram approximation
(Eq. A19). Fill is the R2 fit
quality for PC1
approximating the full
histogram, given the
histogram has the special
structure given in Eq. A9. p

is the number of features. a

is the deficit frequency. b is
the joint deficit frequency

R2 = 0.84, the fit for our data yielded R2 = 0.50 —
large, but smaller than the ideal case.

This idealized, “toy,” model explains the approx-
imate equivalence of the FI and PC1. What’s more,
it allows us to estimate how dominant the FI/PC1
is. In the limit of a large number of variables and/or
b ≈ a, we find that the FI/PC1 becomes a better
approximation for the information in the 2D his-
togram. This is consistent with the observation that the
FI is best used to describe a large number of correlated
variables.

A.4 PCA approximates logistic PCA

Logistic PCA [33] minimizes the Bernoulli deviance,
in analogy to the Gaussian formulation of linear
(normal) PCA. The optimization problem is not con-
vex but Landgraf and Lee [33] derive an iterative
majorization-minimization scheme for solving the
problem. We follow their approach and show that the
first iteration of their loss function reduces to the same
loss function as linear PCA. As a result, the estimated
transformation, U , will be the same for either PCA or
logistic PCA after the first iteration.

There are four steps to our adaptation of their
approach:

1. Initialize U(0) to be an orthogonal matrix. Pick
k = p. Then, U(0)(U(0))t = I .

2. Initialize the mean, μ = logit(ε) where ε → 0+
is a small, positive number. This is akin to not
subtracting the mean when we perform PCA.

3. Fix m ≡ −μ. This is the main assumption. m

should be a large, positive number [33]. Our defini-
tion of μ ensures that m is a large positive number.

4. Iterate the majorization-minimization algorithm
[33] exactly once.

The initial θ
(1)
ij = θ̃ij , due to the orthogonality of the

initial U(0). Note that θ̃ij ≡ m(2Xij − 1) [33]. The
loss function, Eq. (9) of [33], is then

min
U

∑
i

∑
j

([
UUt

(
θ̃i· − �μ

)]
j

−
(
θ̃ij − μ

)

−4
(
Xij − σ

(
θ̃ij

)))2

= min
U

∑
i

∑
j

([
UUt

(
2m �Xi· − m�1 − �μ

)]
j

− (
2mXij − m − μ

) − 4
(
Xij − σ

(
θ̃ij

)))2

= min
U

∑
i

∑
j

(
2m

([
UUt �Xi·

]
j

− Xij

)

−
([

UUt
(
m�1 + �μ

)]
j

− m − μ

)

−4
(
Xij − σ

(
θ̃ij

)))2

= 2m min
U

∑
i

∑
j

([
UUt �Xi·

]
j

− Xij

)2

, (A22)

where we use m ≡ −μ and μ → −∞ in the last line,
with m → ∞ ensuring σ(θ̃ij ) → Xij (σ is the inverse
logit). The factor of 2m does not affect the position
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of the minimum and hence Eq. A22 finds the same
optimal U as the PCA loss function, Eq. A4 (recall
that U is constructed out of the set of �φi).

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s11357-022-00723-z.
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