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ABSTRACT

The population dynamics of human health and mortality can be jointly captured by complex network models using scale-free network topol-
ogy. To validate and understand the choice of scale-free networks, we investigate which network topologies maximize either lifespan or
health span. Using the Generic Network Model (GNM) of organismal aging, we find that both health span and lifespan are maximized with a
“star” motif. Furthermore, these optimized topologies exhibit maximal lifespans that are not far above the maximal observed human lifespan.
To approximate the complexity requirements of the underlying physiological function, we then constrain network entropies. Using non-
parametric stochastic optimization of network structure, we find that disassortative scale-free networks exhibit the best of both lifespan and
health span. Parametric optimization of scale-free networks behaves similarly. We further find that higher maximum connectivity and lower
minimum connectivity networks enhance both maximal lifespans and health spans by allowing for more disassortative networks. Our results
validate the scale-free network assumption of the GNM and indicate the importance of disassortativity in preserving health and longevity in
the face of damage propagation during aging. Our results highlight the advantages provided by disassortative scale-free networks in biological
organisms and subsystems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0105843

Network models of aging have assumed that binary health
attributes interact through a scale-free network topology. Empir-
ical reconstruction of interaction networks large enough to
test this scale-free assumption is not yet possible. Here, we
instead search for topologies that maximize lifespan or health
span—health throughout the lifespan. Our optimal networks are
a simple star motif, and by imposing a fixed network entropy tar-
get, we obtain similar health and longevity but with a scale-free
network topology. We use the target entropy to approximate the
functional requirements of the organism. Our results validate the
use of scale-free topologies in network models of aging health and
indicate a generic advantage of disassortative scale-free networks
for biological systems in the face of propagating network damage
during aging.

I. INTRODUCTION

Organismal aging is a complex dynamical process that ends
in death. Summary measures of aging health differ significantly
from each other,1 which suggests that aging is multi-dimensional.

Indeed, only high-dimensional machine learning models can accu-
rately predict individual aging health trajectories.2 Models of aging
that include many health attributes are, therefore, useful to better
understand the aging process. Network models are well suited for
dynamical models of aging health since they can explicitly capture
interactions between health attributes.2–8

Human mortality rates grow exponentially with age, which is
the Gompertz law of mortality.9 Damage also accumulates increas-
ingly rapidly, but stochastically, with age.10,11 To jointly capture the
dynamical increase in both mortality and damage within one model,
the Generic Network Model (GNM) of aging assumes a scale-free
network model of interacting health attributes.5–7

Scale-free networks are often used in biological models.12–14

While it has been claimed that they may actually be rare,15

their prevalence may be underestimated by finite size effects
imposed by the small number of nodes available in most empiri-
cal studies.16 Within aging research, while progress has been made
in determining the network structure for both binarized8 and non-
binarized2 aging health variables, empirical approaches have been
limited to small networks with only dozens of nodes. As a result,
observed organismal aging data have not been sufficient to reliably
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infer network topology. Nevertheless, long-tailed degree distri-
butions together with high disassortivity—as provided by scale-
free networks,14,17 which have power-law degree distributions P(k)
∼ k−α—were required to replicate the observed mutual information
between the damage of aging health attributes and mortality.7

While scale-free networks can describe aging phenomenology,
it is not clear how or why they arise. A general critique of scale-
free networks is that functional or generative mechanisms for how
they arise are often missing.18 This critique is important to address
since such a functional mechanism could also apply to health at
different scales of physiological function—i.e., subsystems, organs,
and tissues. If such a mechanism exists, we might expect ubiquitous
scale-free networks describing aging health.

What would a principled approach to network topology look
like? While there are many detailed evolutionary theories of organ-
ismal aging,19–21 they should all be consistent with high reproductive
success over a natural life-course. Within the context of the GNM,
where health attributes are not mapped to specific physiological
functions, this is best represented by maximizing the time span
of good health. We could also imagine that reproductive success
is specifically preserved during natural lifespans, in which case we
could simply maximize lifespan.

A healthy lifespan (health span) is of considerable interest
in aging research.22 While there are a variety of tools for assess-
ing health span, the QALY (quality- or health-adjusted life-years)
approach of weighting years of life by a health index between 0 and
1 is often used.23 Here, we assume that organisms that are in better
health for larger periods of time will be more successful, so we will
take QALY as a proxy for evolutionary fitness. So, we are interested
in how health span—as measured by QALY—is affected by network
topology, and how it can be maximized.

There is also controversy about the limits of the human lifespan
(see, e.g., Refs. 24–26). An interesting question in this context is how
the maximal average lifespan obtained by optimizing the network
topology compares to what we observe today.

Network connections (edges) in the GNM capture how the dif-
ferent health attributes of the organism are interdependent. The
GNM models the propagation of damage or dysfunction, so the
static network connections model how such dysfunction spreads.
Nevertheless, it is reasonable to assume that interdependencies of
dysfunction reflect interdependencies of function—and so are con-
strained by physiological function. Such constraints on the network
structure could push it away from simply optimizing health span or
lifespan performance. Maximizing entropy is a common approach
in the face of unknown constraints.27,28 Accordingly, we will con-
strain network entropy to approximate the unknown physiological
constraints on network topology.

Often entropy has been used to characterize damage. The
entropy of disorder has been used to describe genomic damage dur-
ing aging,29 while excess thermodynamic entropy production is a
result of organismal dysfunction.30 In contrast, here we use entropy
to characterize the network of interactions that are present at matu-
rity within the GNM. Damage propagates within the static network
of interactions; the entropy reflects network complexity rather than
damage.

We have four questions that we explore in this work. First,
do different network topologies arise from optimizing longevity vs

health span? Second, are optimized network topologies similar to
the scale-free networks used in GNM models of population aging?5–7

Third, how does network entropy affect longevity or health span?
Finally, what other aspects of network topology affect lifespan and
health span? We consider all of these questions within the context of
the dynamical GNM of aging, where we leave the parameters of the
health dynamics unchanged during network optimization.

II. METHODS

A. Damage and mortality dynamics

In this work, we use the stochastic GNM dynamics7 with a
modified mortality condition (see below). Each of the N = 104

nodes represents a binary health attribute of an individual that can
be in either a healthy (di = 0) or unhealthy (di = 1) state. Nodes
are dynamic while edges or links are static. Each individual starts
with every node undamaged at age t = 0. Every node starts with the
same basal damage rate "0, so the initial damage in the network is
independent of the structure. A node being damaged increases the
damage rate of its neighboring nodes. That is, the damage rate of the
ith node increases exponentially with the damage of its neighbors as
follows:

"+
i = "0e

γ + fi , (1)

where fi is the local frailty of the ith node—the FI measured over the
neighbors (indexed j),

fi =
∑
neigh:j

dj/ki. (2)

This results in damage spreading rapidly from nodes, which have
damaged at early times due to the basal damage rate. Importantly,
the nodes most susceptible to neighbor damage are low degree nodes
since the damage rate increases exponentially with increments of
1/k. So, the initial damage in the network spreads most quickly to
the low degree nodes and then the neighbors of these low degree
nodes. High degree nodes are not so heavily affected by neighbor
damage and tend to damage later, which leads to the neighbors of
these high degree nodes damaging later as well.

In this work, we use a proportional hazard model of mortality.31

An individual’s mortality rate increases exponentially with the aver-
age damage of their entire network ftot,

"M = "de
γmftot , (3)

where ftot =
∑N

i=1 di/N. We find that using "d = 0.01, γm = 8,
γ+ = 7.5, and "0 = 0.001 83yr−1—together with a scale-free expo-
nent α = 2.35 and average connectivity 〈k〉 = 4—we retrieve the
same human health and mortality statistics as previously reported
for the GNM, which were shown to match observations.6,7

While proportional hazards mortality introduces two more
model parameters ("d and γm) than the “two-node” mortality con-
dition used previously,7 we do not modify any of the dynamical
parameters ("d, γm, γ+, or "0) during our optimization of the
network topology. We also keep the average degree fixed, with
〈k〉 = 4.
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B. Network generation

The space of distinct network topologies with N = 104 nodes
is huge and is impractical to effectively search and optimize with-
out simplification. Accordingly, we consider degree distributions
P(k) with minimum and maximum degree kmin ≥ 1 and kmax < N,
respectively. Unless otherwise mentioned, we use kmin = 2 since it is
matches the minimum degree in the scale-free networks used in the
original GNM work.

For a tractable non-parametric approach, we consider degree
distributions P(k) with a specific selection of possible node degrees.
At low degrees, we allow all k from kmin to k = 6. Restricting the
upper limit of this range to 4 or increasing it to 10 does not change
our qualitative results. At higher degrees, we use log-uniform spac-
ing from k = 6 to kmax. Using log- or linearly- randomly sampled
degrees instead also does not change our qualitative results. In
all, we use 15 possible node degrees. Using 10 or 20 instead does
not change our qualitative results, though optimizing 20 or more
distinct degrees becomes computationally onerous.

We sample the degree distributions using the random hubs
method,32 which is well suited to sampling long-tailed distributions
while maintaining a precise 〈k〉. Our parametric optimization uses
scale-free networks generated for a given exponent α using a pref-
erential attachment method to determine the degree counts of the
network, D(k).

Using the sampled degree counts D(k), we build the joint con-
nection matrix J(k′, k) using tunable assortativity parameters pd, pa,
and pr (with pd + pa + pr = 1). Beginning with the highest degree,
we connect it to the furthest degree with probability pd (disassorta-
tively), to the most similar degree with probability pa (assortatively),
or to a random degree—weighted by remaining available connec-
tions—with probability pr. Once all edges for nodes of degree k are
satisfied, we repeat the process for the next largest k until all edges
are assigned within J(k′, k).

Alongside the assortativity tuning, there are several constraints
on how edges may be assigned in the network. We insist that net-
works must be fully connected—since all parts of the organism are in
some capacity connected. Furthermore, the network must be simply
connected, excluding self-connections that would effectively modify
the damage rate of a node and so violate the generic assumption of
the model. Similarly, multiple connections between nodes is also dis-
allowed since they would violate the unweighted graph assumption;
nodes with multiple connections would contribute to the damage
rate according to the number of connections.

Once edges have been assigned consistent with constraints, the
network is generated from J(k′, k) using the method of Gjoka et al.33

We explore the network space with an evolutionary algorithm,
making random changes to both the degree distribution P(k)—either
directly in the non-parametric case or through the scale-free expo-
nent α—and the assortativity parameters (pd, pa, and pr) at each
generation and keeping successful changes.34 Successful changes are
explored using simulated annealing,35,36 based on the merit of the
network (see below). We use a multiplicative logarithmic cooling
schedule: T0/(1 + a log(1 + i)), where i is the iteration number,
T0 = 0.1 is the initial “temperature,” and a = 9.0.

Our optimized networks are compared with the scale-free
networks and random networks of the same average degree
used in previous work.7 We use the linearly shifted preferential

attachment algorithm37–39 to generate parametric scale-free net-
works—replicating the previous GNM procedure.7 Erdös–Rényi
random graphs40 with 〈k〉 = 4 are also generated in the same manner
as previous work.7

C. Merit of health and longevity

For every iteration of our optimization algorithm, we generate a
network and simulate a population of 104 individuals following Far-
rell et al.7 The average lifespan 〈td〉 of these individuals is measured
together with health.

Aging health is measured using the frailty index (FI),10,41 which
is the proportion of damaged binary deficits—in our case damaged
nodes. We use FI to assemble an individual QALY (quality adjusted
life years) health span measure23

QALY =

∫ td

0

(1 − FI(t)) dt. (4)

Since FI measures lack of health, 1 − FI measures health. The QALY
is the number of healthy years of life and is a convenient health span
measure.

While assessing network complexity can be challenging,42 we
simply assess the network entropy of the degree correlation matrix
P(k′, k),

S = −
∑
k,k′

P(k′, k) log P(k′, k), (5)

using the Shannon entropy.43 Here, P(k′, k) is the joint connec-
tion matrix J(k′, k) of the network with a normalizing constant.
While the degree distribution entropy has been used for net-
work optimization,44 previous work on the GNM emphasized
the importance of nearest neighbor and degree assortativity on
the health performance in the model.7 We calculate the entropy
on P(k, k′) because it captures the degree assortativity in the
network.

While entropy maximization27,28 motivates our approach, for
computational convenience, we impose a target entropy S∗ and
maximize the health performance H (which is either 〈td〉 or
QALY, both measured in years). Specifically, we maximize the
merit,

M = −λ|S − S∗| + (1 − λ)〈H〉, (6)

where λ ∈ [0, 1] is a hyperparameter used for tuning entropy adher-
ence and S∗ is a target entropy that is varied across the accessible
range of entropies. Our results represent the best performing H at
different values of the entropy S∗; we show results for optimiza-
tions that reach within 5% of the highest merit networks at the given
entropy. We use the convex hull calculated across the top perform-
ing networks to determine the relevant optimal merit at a given
entropy.

D. Workflow summary

Our workflow is summarized in Fig. 1, which starts from
the degree distribution (a), generates the joint distribution with
constraints (b), generates a network (c), runs individual aging sim-
ulations using the same network (d) to obtain population health
and mortality statistics, evaluates the merit (e), and explores and
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FIG. 1. Workflow diagram. (a) The degree distribution P(k) is sampled using the
random hubs method (parametric scale-free networks instead use the preferential
attachment method to generate a degree sequence based on α); (b) edges are
assigned between nodes of degree k and nodes of degree k′ according to the
assortativity parameters pa, pd , and pr . This generates the degree correlation
matrix P(k′, k); (c) networks are generated using P(k′, k) using the algorithms
developed by Gjoka et al.;33 (d) the GNM simulates the health trajectories of 104

individuals until mortality, and summary health statistics are measured; (e) merit is
evaluated dependent on the entropy target S∗ and the entropy weighting λ; (f) the
network is accepted or rejected as the new highest performing network according
to simulated annealing procedures; (g) the network generation parameters are
perturbed from the highest performing parameters, and the workflow is repeated
with the perturbed parameters.

FIG. 2. Average lifespan for networks optimized in either lifespan (〈td〉, blue cir-
cles) or health span (QALY, orange triangles) vs entropy S∗. Note the similar
performance of the lifespan and health span optimized networks. For reference,
we show a scale-free network from the GNM (pink square) and a random graph
(purple star). Each point shows the endpoint of a different optimization with a net-
work size of N = 1024 nodes and an average calculated over 104 individuals for
〈QALY〉 and 〈td〉. Only networks within 5% of the best merit at a given entropy are
shown. Inset: health span plotted against lifespan for the same networks.

optimizes the network parameters using simulated annealing [(f)
and (g)].

III. RESULTS

The optimized average lifespan 〈td〉 vs network entropy S∗ is
shown in Fig. 2. Networks within 5% of the maximal merit at a given
S∗ are shown, along with the published GNM (pink square)7 and a
random graph (purple star). Interestingly, the maximal average lifes-
pan is not far above current human population averages (≈80 yr)
and is close to the maximum observed human lifespans (≈110 yr).24

We have also shown (orange triangles) the average lifespan 〈td〉

of networks that were QALY optimized. They are qualitatively indis-
tinguishable from lifespan optimized networks. While the health
span is necessarily smaller than the lifespan, the inset shows that the
relationship between QALY and lifespan is approximately linear for
optimized networks.

Lifespan or health span optimized networks are low entropy.
As indicated on the left side of Fig. 3, they are characterized by a
hub and peripheral node style structure and are very disassortative.
The maximum degree nodes are connected to the minimum degree
nodes and there are no intermediate degree nodes.

Without any constraints, we find that the network with the best
health and lifespan performance is a perfect star motif—one high-
degree hub node connected to many degree 1 neighbors—with an
average lifespan of 150 yr and a QALY of 120 yr (not shown). For
this motif, the damage rates of peripheral nodes are only deter-
mined by the hub node—so they remain at the basal damage rate
"0 until the hub node is damaged. Conversely, the hub node also
remains close to its basal damage rate until a significant number of
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FIG. 3. Connectivity statistics for networks optimized at theminimum target entropy ofS∗ * 0.7 [left column, panels (a), (c), and (e)] and comparable entropy to previous GNM
networks S∗ * 4.0 [right side, panels (b), (d), (f)]. The top row shows the degree distributions of networks optimized for lifespan (blue circles) and QALY (orange triangles).
The middle row shows the degree correlation matrices for the lifespan optimized networks. The higher entropy network maintains highly disassortative connections, but with
a broader range of node degrees. Also, low-degree assortative connections begin appearing at higher entropies. The bottom row shows the local clustering coefficient C(k)
for the respective networks—with the C(k) ∼ k−1 scaling commonly observed in scale-free networks.45

peripheral nodes are damaged. Mortality occurs very soon after the
hub node damages, since then the peripheral nodes rapidly dam-
age. The average degree constraint (〈k〉 = 4) prevents the optimized
networks from being perfect star motifs, as does the target entropy.

At larger target entropies (and with 〈k〉 = 4), the hub and
peripheral structure is qualitatively preserved—as can be seen in the
joint degree distribution P(k, k′) (Fig. 3 middle row). Strikingly, for
S∗ ! 2, a scale-free (power-law) degree distribution P(k) is observed
at smaller k. We also find that our optimized networks have the
local clustering coefficient scaling with k−1, similar to real-world
scale-free networks.45

Parametric scale-free networks can be efficiently generated
with different degree exponents α using the preferential attach-
ment algorithm—which controls many network characteristics. As
we can see with the blue circles in Fig. 4, the lifespan (and health
span, not shown) are very close to the non-parametric optimiza-
tion (orange triangles)—though somewhat lower. The inset shows
that α increases with higher network entropy. The scale-free net-
works also have a higher achievable maximum entropy since they
are not constrained to a small number of possible degrees. Note that
we have optimally rewired both the parametric and non-parametric
scale-free networks with assortativity parameters (pd, pa, and pr). As
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FIG. 4. The lifespan of networks optimized for lifespan vs target entropy S∗. The
data shown are from our non-parametric optimization (orange triangles) and our
tuned scale-free networks (blue circles) of size N = 1024. The non-paramet-
ric optimization reaches higher maximum lifespans and has a steeper trade-off
with entropy. The scale-free networks have higher maximum entropy due to hav-
ing a greater number of unique node degrees. The inset shows the parametric
scale-free degree exponent α along the entropy range for the same data. α
increases smoothly for all but the highest target entropies. For reference, we
also show a scale-free network from the GNM (pink square) and a random graph
(purple star).

a result of this rewiring, we find that the scale-free network origi-
nally used to model human data (pink square)7 falls slightly below
our optimal scale-free exponent vs entropy curve.

Figure 5 shows common network metrics to assess what is
changing with S∗ and between parametric and non-parametric
approaches. Figure 5(a) shows that there is a strong relationship
between entropy and degree disassortativity. Only the non-
parametric approach (triangles) can reach the lowest entropies

with maximum disassortativity—which leads to the best lifespan or
health span performance. Figure 5(b) suggests that this is due to the
maximum degree in the network being limited in the parametric
scale-free networks (circles). Parametric scale-free networks have a
similar hub and peripheral node structure as non-parametric, but
since the hubs are lower degree, there are necessarily more of them.
This limits disassortativity and moves further away from the ideal
star motif.

Since the non-parametric optimization uses maximum degree
close to N for much of the entropy range, it is helpful to look at
the scaled second moment of the degree distribution to assess its
top-heaviness. In Fig. 5(c), we see that the scale-free networks have
smoothly decreasing second moment with entropy. However, in the
non-parametric approach, there are discrete steps at lower entropies
due to the transition of 2 maximum degree nodes to 1 node of maxi-
mum degree and various lower-degree hub nodes. We also find that
the average clustering coefficient varies smoothly with both entropy
and lifespan in these optimal networks, with the exception of some
rare cases at very low entropies. We see in Fig. 5(d) that at minimum
entropy, some networks flip from maximum to minimum average
clustering coefficient. This is due to either the presence or absence
of an edge between the maximum degree nodes, respectively.

From the network metrics, it appears that higher kmax leads to
better lifespan and health span performance. We investigate kmax

effects systematically by hand-building networks in the optimal
lifespan hub and peripheral node structure and varying the degree of
the hub nodes, while keeping kmin = 2 and 〈k〉 = 4(1 − 1/kmax) * 4.
Figure 6 shows how strong of an effect kmax/N has on both life and
health span. Interestingly, health span increases more rapidly with
kmax than lifespan. In the inset, we show that larger kmax/N results in
delayed damage accumulation, i.e., morbidity compression.46

IV. DISCUSSION

Using the stochastic dynamics of the Generic Network Model
(GNM) of aging and mortality, we find that the optimized network
topology for maximizing either lifespan or health span is a highly

FIG. 5. Summary metrics for networks optimized for lifespan using our non-parametric (triangles) and scale-free (circles) methods, representing the same networks as
in Fig. 4. The colors show the average lifespan of the associated network. (a) Degree assortativity vs S∗. The lowest entropy (best performing) networks are the most
disassortative. (b) Maximum degree vs S∗. The maximum degree is largest at low entropies for both optimization methods but maximized over a large range of entropies in
the non-parametric case. (c) The scaled second moment of degree distribution 〈k2〉/N vs S∗. The degree distributions of the networks become less top-heavy with increasing
entropy, even for networks with the same maximum degree. (d) Average clustering coefficient vs S∗. The clustering coefficient generally decreases with entropy. At small
entropies, some small values are observed if hub nodes are not connected directly to each other.
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FIG. 6. The health performance of optimal, star motif-based networks for a range
of maximum degrees kmax/N. All have kmin = 2 and 〈k〉 = 4(1 − 1/kmax) * 4.
The lifespan (circles) and QALY (stars) performance of these networks increases
roughly linearly for kmax ranging from 10% up to 100% of the network size. The
linear trend holds for the whole range of network sizes, shown by the color of
the points. The inset shows the average FI (health) for the last 30 years of life for
kmax/N ≈ 1 (solid green line), kmax/N ≈ 0.5 (dashed orange), and kmax/N ≈ 0.1
(dotted blue). Compression of morbidity (a delayed increase of FI) is observed for
larger kmax/N.

disassortative and scale-free-like network. The same network opti-
mizes both health span, as measured by the QALY, and lifespan.
Without a target entropy S∗ representing physiological constraints,
a maximally disassortative “star” motif was optimal.

Scale-free networks with a wide range of degree assortativities
are needed to model the phenomenology of human health. These
networks capture a broad range of mutual-information observed
between observed health attributes and mortality while simultane-
ously describing population health and mortality statistics.5–7 As
such, our optimized networks are qualitatively consistent with ear-
lier GNM models. However, our optimization study indicates that
strongly disassortative (tuned by pa and pd) scale-free networks per-
form better than GNM networks that are generated from default
preferential attachment algorithms for scale-free networks.

Since physiological constraints are represented by a generic
target entropy S∗ within the context of the GNM we do not test
detailed theories of aging.19,20 However, health span optimization is
broadly consistent with life history theories that maximize repro-
ductive success.47 As such, we provide a rationale for using disassor-
tative scale-free topologies in network models of organismal aging.
It will be interesting to pursue larger-scale empirical determination
of network models of aging,8 since earlier analysis7 was consistent
with a disassortative hub-like wiring. Obtaining empirical networks
at the scale required for good determination of topology may be
challenging8—though finite size analysis may help.16

In contrast, cellular-scale interactome networks13,48 are rel-
atively well characterized because of the availability of high-
throughput techniques. The GNM networks we have studied differ

because they represent how significant dysfunction propagates at all
organismal scales, rather than representing functional interaction at
cellular scales. The GNM network is static and damage propagates
across it dynamically. In contrast, interactome networks change
with disease or dysfunction (see, e.g., Refs. 49–51). The connection
between interactome networks and the GNM dysfunction networks
of this work is not yet clear.

Observational health and mortality studies of human popula-
tions implicitly include significant medical interventions. The life
expectancy of people over 65 has almost doubled from 1900 to
today.46 We expect such medical interventions to affect the GNM
dynamics (e.g., repairing damage) but not change the network topol-
ogy (i.e., the interdependencies of organismal physiology). As such,
our optimized network topology should still be relevant to model
observed human health and mortality data.

For the underlying maximally disassortative star motif, dam-
age typically builds up in peripheral nodes, then propagates to hub
nodes, which quickly saturates the damage of peripheral nodes,
which leads to mortality. Extending health span would then broadly
target peripheral nodes with either budgeted repair (the “disposable
soma” theory of aging19,20) or preventative health measures such as
exercise52 or diet.53,54 Damaged hub nodes would need to be repaired
rapidly before damage saturates peripheral nodes. With the network
entropy constraint, the optimal network is still highly disassortative
but hierarchically clustered. This scale-free behavior suggests that at
all scales there will be downstream effects to consider—not just from
hubs. The same lessons apply, however: broad preventative mea-
sures for peripheral nodes and rapid treatment of highly connected
nodes. Wait-time effects of delayed repair would be interesting to
study as part of a broader model of the effects of health interventions
in the context of our optimal network structure.

The network entropy we have constrained is not the same
as the thermodynamic entropy generated by organismal dysfunc-
tion during aging30 or the genomic entropy accumulated during
aging.29 However, the network determines how dysfunction prop-
agates—and so determines where thermodynamic entropy is gener-
ated and where the effects of genomic damage and dysregulation are
observed.

For our GNM, simplifying assumptions are that the dynam-
ical rate constants (γ +, "0) do not vary among nodes and that
edges between nodes are unweighted and undirected – i.e., that
the dynamical parameters are homogeneous. In real systems, we
would expect rate constants to vary between nodes and inter-
action strengths to vary between edges—i.e., to have heteroge-
neous weights. Heterogeneous weights could be reconstructed with
sufficient observational data,8 and nodes could then be identi-
fied with specific physiological features. We further note that the
health attributes in the GNM are binary, which is common prac-
tice in healthcare. Some progress has been made in reconstruct-
ing heterogeneous interaction networks of continuous aging vari-
ables using deep-learning techniques.2 Optimizing heterogeneous
networks—with either binary or continuous variables—would be
a daunting prospect because the heterogeneity leads to a huge
parameter space and a consequent curse of dimensionality. More
practically, sufficiently large reconstructed heterogeneous networks
should allow us to examine whether the network structures we
recover here are observed in practice.
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One important result is that health span and lifespan optimiza-
tion are equivalent. Accordingly, health span (the compression of
morbidity) is how lifespan is maximized. This is largely determined
by high disassortativity—a specialized hub-like network structure
where hubs are more strongly connected to peripheral nodes than
each other. Qualitatively this looks much like the organismal struc-
ture we observe. Because our approach is generic, we would obtain
the same results for other organisms or sub-system that maxi-
mizes its health span. Accordingly, we expect that many biological
organisms and their constituent subsystems to exhibit disassorta-
tive star-like or scale-free structures at every scale—subject to any
detailed physiological constraints.
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