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A B S T R A C T

To explore the mechanistic relationships between aging, frailty and mortality, we developed a computational
model in which possible health attributes are represented by the nodes of a complex network, with the con-
nections showing a scale-free distribution. Each node can be either damaged (i.e. a deficit) or undamaged.
Damage of connected nodes facilitates local damage and makes local recovery more difficult. Our model de-
monstrates the known patterns of frailty and mortality without any assumption of programmed aging. It helps us
to understand how the observed maximum of the frailty index (FI) might arise. The model facilitates an initial
understanding of how local damage caused by random perturbations propagates through a dynamic network of
interconnected nodes. Very large model populations (here, 10 million individuals followed continuously) allow
us to exploit new analytic tools, including information theory, showing, for example that highly connected nodes
are more informative than less connected nodes. This model permits a better understanding of factors that
influence the health trajectories of individuals.

1. Introduction

Aging is the cumulative effect of degradation occurring at every
level of the organism. One consequence of human aging is an ex-
ponentially accelerating mortality with age, according to the Gompertz
law (Kirkwood, 2015; Gavrilov and Gavrilova, 2006). This law con-
siders age, but not health status: the potency of age as the only risk
factor for mortality reflects undefined changes in health. This un-
measured heterogeneity in health (and thus in the risk of death of
people of the same age) is termed “frailty” (Vaupel et al., 1979).
Clinically, frailty is recognized as a multiply-determined state of in-
creased vulnerability; it increases with age (Rockwood, 2005;
Rockwood et al., 2017; Clegg et al., 2013; Xue et al., 2016). Reflecting
these many determinants, a broad range of health deficits can char-
acterize individual frailty through a frailty index (FI), which is the
proportion (from 0 to 1) of possible health deficits that are present in an
individual (Mitnitski et al., 2001). The FI resolves much of the other-
wise unmeasured heterogeneity in health of people of the same age, and
is correlated with individual mortality (A. Mitnitski et al., 2017;
Kulminski et al., 2008; Rockwood et al., 2017; Clegg et al., 2013).

Progress in understanding frailty in humans in relation to aging
requires models. Animal models of health offer convenience, economy,
and qualitatively similar behavior to human aging and mortality
(Howlett, 2015). Mathematical models of aging can play a similar but

complementary role, and have a long history (Yashin et al., 2000).
Computational (“in silico”) models can capture individual variability of
health and mortality with stochastic transitions in health states. These
computational models allow us to inexpensively generate large popu-
lations, examine hypotheses of cause and effect, develop new analytical
tools, and explore sample size effects. Computational models of orga-
nismal aging nevertheless entail significant simplification; they are not
intended to directly address particular details of individual health.
However, they can explore the mechanisms that underlie the simplicity
and success of the FI (Mitnitski and Rockwood, 2015; A. Mitnitski et al.,
2017). How aging gives rise to frailty remains poorly understood and
requires new approaches. Complex networks provide natural models of
inter-relationships in biology, physics, and social interactions (Barabasi,
2016) and can be used to explore the relationships between aging,
frailty and mortality.

In this mini-review, we summarize our recent work—providing a
mechanistic understanding of why and how deficits accumulation,
summarized by the frailty index, is related to aging and mortality at the
systems (whole organism) level.

2. Results and discussion

We have used a complex network to model human aging and relate
it to frailty (Fig. 1) (Taneja et al., 2016; Farrell et al., 2016; A.B.
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Mitnitski et al., 2017). Nodes of the network can each be either un-
damaged or damaged (thereby representing deficits). Damaged nodes
can be repaired, reflecting an important source of the observed dy-
namics of frailty (A. Mitnitski et al., 2017). Nodes correspond to generic
health attributes, and are not explicitly identified. The connections
between nodes represent significant correlative connections, which can
be causal. A relatively small number of nodes (“hubs”) are well con-
nected whereas most peripheral nodes are not, as is captured with a
scale-free distribution of the number of connections for each node
(Barabasi, 2016; Taneja et al., 2016). The two most connected nodes
are mortality nodes; the next most connected nodes which are not
mortality nodes are frailty nodes. Frailty nodes broadly correspond to
clinically or biologically significant health characteristics. Most nodes
have few connections.

Nodes are damaged randomly reflecting environmental influences,
intrinsic features, and their interaction – such as through inflammation
(Fulop et al., 2015; Jazwinski and Kim, 2017). Through interaction, the
rate of damage of an individual node increases as more of its connected
neighbors are damaged. Let the local frailty fi be the fraction of da-
maged nodes connected with the i-th node (where 0 < fi < 1). The
damage Γ+ and repair Γ− rates for the i-th node can be approximated
using an exponential function of the local frailty: Γ+ = Γ0 exp(γ+ fi);
Γ− = Γ0 / R0 exp(−γ− fi) and the constant parameters Γ0, R0, γ+,γ−
(Taneja et al., 2016; Farrell et al., 2016; A.B. Mitnitski et al., 2017). The
overall proportion of damaged frailty nodes corresponds to the FI.
There are three additional parameters of the model: the scale-free ex-
ponent α, the average degree of connectivity (i.e. the number of con-
nected nodes) to a given node, 〈k〉, and the number of frailty nodes.
The values of these parameters can be found in Farrell et al., 2016. The
best fitting of mortality was obtained using 2 mortality nodes. Although
the information values increased with a larger number of nodes, the
number of frailty nodes did not influence the shapes of the mortality
and average frailty curves (Farrell et al., 2016). The behavior of our
complex network quantitatively captures Gompertz's law (Fig. 2), the
accelerated growth of the FI with age, the broadening of the distribu-
tion of the FI with age, and its observed submaximal values (at FI < 1)
(Farrell et al., 2016; A.B. Mitnitski et al., 2017).

Three examples illustrate both the power and the limitations of
quantitative modeling. First, a quantitative model requires every as-
sumption to be explicit, and this allows hypotheses of causal relation-
ships to be explored. Even though hypotheses are difficult to falsify
with only a specific model together with a finite parameter range, the
plausibility and consistency of hypotheses can be validated. For ex-
ample, programmed aging implies an explicit age-dependence of cel-
lular or organismal function (A.B. Mitnitski et al., 2017). Contrasting

this is the hypothesis that aging results implicitly from the accumula-
tion of damage (Kowald and Kirkwood, 2016). Our model supports this
latter hypothesis, by showed that aging phenomenology could be re-
covered with no explicit age-dependent rates of damage or mortality.

Models allow us to explore quantitative hypotheses and so generate
testable predictions. For our second example (Farrell et al., 2016),

Fig. 1. Connectivity networks of a model in-
dividual at age 40 years (left) and then at age 80
(right). The circle size of each node is proportional
to its connectivity. Damaged nodes are filled, un-
damaged nodes are empty. Individuals die when
both mortality nodes (red circles, being the two
most connected nodes) are damaged. Also shown
are 30 frailty nodes (blue circles), and 268 others
(green circles). At age 40 neither mortality node is
damaged, whereas 3 of 30 FI nodes are (FI = 3/
30 = 0.10) as are 34 other nodes; at age 80, one
mortality node, 15 FI nodes (FI = 15/30 = 0.50),
and 173 other nodes are damaged. This individual
died at age 82. (For interpretation of the references
to colour in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 2. Variation of the mortality rate with age with network parameters. The default
model parameters are used for different average connectivities 〈k〉 (b), or for different
scale-free exponents α (a). Black squares indicate observational statistics (Arias, 2014).
Parameter values are as indicated by the laegends; otherwise default parameters are used
with Γ0 = 0.00113 (per year), R0 = 1.5, γ+ = 10.27, γ− = 6.5, 〈k〉 = 4, and
α = 2.27. N = 104 network nodes were used. After (Farrell et al., 2016). Our model does
not address development and so does not exhibit increased early-childhood mortality.
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various observational studies have exhibited an upper frailty limit.
Although many studies have a limit of about 0.7, in some it is much
lower – down to 0.3 for example (Clegg et al., 2013; Drubbel et al.,
2013; Harttgen et al., 2013). We were only able to recover a frailty limit
below 1.0 in our model by adding a finite diagnostic sensitivity for
individual deficits (Farrell et al., 2016). Since a finite sensitivity would
apply to the FI in general, and not just the FI limit, we predict that
studies with significantly lower limits would also have significantly
lower average FI at a given age. Indeed, this is observed (Clegg et al.,
2016; Drubbel et al., 2013; Harttgen et al., 2013).

In a third example of the power and limitations of modeling, con-
sider the impact of choices about network structure. To construct our
network model, we had to make assumptions about how connections
were made between nodes. We assumed that as with most biological
networks (Barabasi, 2016; A.B. Mitnitski et al., 2017), relatively few
nodes were connected with many other nodes, whereas most nodes
were only connected with a few other nodes. This echoes the intuition
of “geriatric giants”, that high order health impairments of, e.g.,
walking speed, balance, cognition, or daily function integrate in-
formation about many aspects of health; in consequence, they are
highly connected. In contrast, although in biological systems no two
attributes are entirely independent of each other, many physiological
aspects of health are only indirectly related. We were also driven to this
assumption (Fig. 1), because our model did not exhibit observed aging
phenomena otherwise. This implies that the network structure is im-
portant in human aging.

Highlighting the importance of the network structure, both network
parameters of the model significantly influence the shape of the mor-
tality rate vs age plot: the scale-free exponent α that inhibits network
hubs, and the average number of connections of each node 〈k〉.
Increasing either network parameter increases the Gompertz slope of
the mortality curve at older ages (Fig. 2A and B). Interestingly, the rate
of mortality at younger ages changes in the opposite direction as α or
〈k〉 is increased. This corresponds to the well-known phenomenon of
the so-called Strehler-Mildvan correlation – an inverse relationship
between the slope and the intercept in the Gompertz law (Strehler and
Mildvan, 1960; Gavrilov and Gavrilova, 2006).

We can use computational approaches to rapidly model the sto-
chastic health trajectories and mortality of> 10 million individuals.
Since the model data set is clean, large, and perfectly characterized, we
can use it to explore new ways of analyzing observational data, since we
can directly assess how well the analysis works. For example, in-
formation theory provides a non-parametric way of quantifying how
much knowing the FI reduces our uncertainty in the mortality of an
individual (Farrell et al., 2016). We can also use information measures
to assess how much we learn about mortality by knowing an in-
dividual's age, or how much additional information is obtained by
knowing an individual's FI given that the age is already known.

We find that larger FIs (i.e. with a larger number of actual health
deficits) are most informative for younger individuals and can even
exceed the information gained from knowing age alone (Farrell et al.,
2016). Larger FIs indicate much earlier age-at-death than the young
ages would typically indicate. On average, we also find that the in-
formation gain provided by the FI increases monotonically with the
number of possible deficits included in the FI. This gives theoretical
support to the recommendation to include all available health deficits
in the FI. It further supports an inclusive, rather than a parsimonious,
approach to evaluating the large number of potential biomarkers
available through ‘omics’ inquiries.

We can also investigate the informativeness of individual deficits.
Our model demonstrates that information value of individual deficits
depends on how connected they are to other nodes in the network.
Deficits with more connections are more informative about mortality
(Farrell et al., 2016; A.B. Mitnitski et al., 2017). As our model network
has relatively few well-connected nodes and many more less connected
ones, we have a broad range of connectivities. This allows us to assess

the information that individual health nodes provide about mortality,
which is the focus of current inquiries.

Age remains a convenient individual variable that provides sig-
nificant information about mortality, even when the FI is known. The
risk of death for older individuals is greater than for younger people
with the same FI. This implies that the FI alone does not yet encapsulate
the full extent of age-related damage, so that more informative FIs may
be possible. Whether further improvements can provide more in-
formation in addition to age remains to be seen. Since age is easy to
assess, the FI complements rather than replaces age for health and
mortality prediction.

Electronic health records now make possible routine FI capture in
large populations using the deficits at hand (Clegg et al., 2016). Since
every individual will have longitudinal records over their lifespan, it
will become possible to include individual frailty “trajectories” into
health assessment. The corresponding challenge is that opportunistic
evaluation of health is likely to be biased - occurring more at times of
health change or crisis than at regular intervals or annual checkups. Our
computational model can precisely track when every deficit occurs for
each individual, providing insights for the best use of longitudinal
health data. In particular, we can quantify how sparse sampling de-
grades the information provided, or the effects of biased sampling that
only occurs during health-changes.

Longitudinal FI analysis might be most useful when clinical inter-
vention is being considered. Computational models allow us to char-
acterize the effects of global or local damage to individual networks.
Given that highly connected nodes are the major contributor to the risk
of death, our model allows us to study how local damage to these hub
nodes changes the rates of deficit accumulation and patterns of mor-
tality. This affords investigation of how interventions to repair in-
dividual nodes might postpone damage propagation. By comparing the
longitudinal behavior of the model with clinical data, our goal will be to
assess the signatures of successful clinical intervention in people with
complex needs.

Network medicine (Barabasi et al., 2011) endeavors to use the un-
derlying networked connections observed in the human organism (e.g.,
genetic, intracellular, metabolic, regulatory) to better treat disease. A
key message of a networked approach is that different aspects of health
at any level of organization of the organism cannot be considered in
isolation from the other elements. The connections themselves, as be-
tween diseases, can be phenomenological (Barabasi et al., 2011).
Within this framework, our network model allows us to explore how
connections at all levels contribute to loss of function and to mortality.
While the composition of our nodes remains unspecified, they can be
thought of as, e.g., genetic/molecular and subcellular/cellular deficits,
or damage at the level of tissue or organs, or clinically detectable
functional or disease deficits. These can be detectable as biomarkers
(Mitnitski et al., 2015; Lorenzi et al., 2016; Kim et al., 2017), then la-
boratory abnormalities (Howlett et al., 2014; Blodgett et al., 2016),
then clinical deficits (Rockwood et al., 2017; Jazwinski and Kim, 2017).
In our model, the network approach makes it possible to understand
how the local and potentially reversible damage in the network ulti-
mately leads to the irreversible event of mortality.

Important challenges remain. Although there appear to be sys-
tematic differences in frailty by sex (Gordon et al., 2017), this is not yet
captured by our model. We have also not yet found a satisfactory way to
address resilience (Ukraintseva et al., 2016), although recent advances
are suggestive (Gijzel et al., 2017). Nevertheless, our network approach
provides a successful foundation on which to address these and other
aspects of aging phenomena with an explicitly quantitative approach.

3. Conclusion

Our network model of interconnected nodes reflects the inter-
dependence of health attributes. These attributes can be summarized in
the frailty index. Our recent work, reviewed here, offers theoretical
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support for how variability in deficit accumulation gives rise to varia-
bility in the risk of death for people of the same age, which is the basis
of frailty in both its statistical and clinical senses. The network model
shows how the local damage caused by the random perturbations
propagates through the complex dynamics network of interconnected
nodes. The model explains not only the known patterns of mortality
(the celebrated Gompertz law) but also how health status (indicated by
the frailty index) gives rise to increasing vulnerability of people when
they age. Even with no age-dependent terms the model generates
characteristic mortality patterns, suggesting that aging is not pro-
grammed. There remain a large number of questions still to address.
With our model, we are able to both ask and answer them with explicit
quantitative approaches.
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