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Abstract Missing data are ubiquitous in aging stud-
ies. Combining the National Health and Nutri-
tion Examination Survey (NHANES) 2003/2004 and
2005/2006 cross-sectional aging studies (N = 9307),
we investigated the effects of both real and simulated
missing data on the Frailty Index (FI) and survival
analysis, along with several mitigation strategies. We
observed distinct block patterns of missing variables
in the dataset. These blocks showed significant haz-
ard rate (HR) differences when they were missing
versus present, indicating that missingness cannot be
simply ignored. Simulations of this patterned missing-
ness produced a bias of 0.0112 ± 0.0008 to the mean
FI when missing values were ignored, representing a
change in hazard of 1.09 ± 0.01. A similar bias of
0.0106 ± 0.0001 was estimated in the real missing-
ness. Imputation was able to correct the bias using the
multivariate imputation by chained equations (MICE)
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method via the classification and regression tree
(CART) prediction model together with rule-based
imputation. Using auxiliary variables (CART+Aux)
improved the performance of CART. Well-performing
imputation models, especially CART+Aux, were able
to increase the FI predictive power and the reliabil-
ity of the HR estimates. In contrast, the default MICE
models, predictive mean matching/logistic regression
(PMM/logreg), caused even stronger biases to the FI.
Our results demonstrate that calibration of the FI as a
mortality predictor depends on how missing data are
handled. Ignoring missing values when calculating the
FI may be an acceptable strategy for clinical settings
where the FI is used as a rough predictor of adverse
outcomes. Where the FI is to be compared across stud-
ies or populations, judicious imputation — cognizant
of the risks carried by poor imputation — should be
used to ensure reliability and precision of statistical
estimates and conclusions.

Keywords Imputation ·Missing data ·MICE ·
Frailty Index · Survival · CART

Introduction

Imputation uses statistical inference to estimate miss-
ing entries in recorded data. Imputation fills gaps
that may interfere with or otherwise complicate data
analysis. Often, analysis software silently excludes
missing data, at times using only the complete cases.

/ Published online: 1 February 2022

GeroScience (2022) 44:897–923



This approach can greatly reduce the amount of avail-
able data, and can bias statistical conclusions [1,
2]. Although imputation is not typically discussed in
the Frailty Index (FI) literature, the most common
approach of ignoring missing values is equivalent to
individual (row)–mean imputation1.

For individuals admitted to hospital with an acute
stroke, Deng et al. showed that complete-case analy-
sis determined that none of the four individual history
variables — including history of stroke — were sig-
nificant determiners of the time-to-diagnosis proxy,
whereas each of five imputation strategies showed that
all variables were both significant and major predic-
tors [3]. However, the choice of imputation strategy
can be important. As discussed by Sterne et al., multi-
ply imputed data in a cardiovascular risk study found
that cholesterol was unrelated to risk when using ini-
tially imputed data, but was a risk factor either when
using the available data or when using an improved
imputation strategy [2].

Imputation is a valid statistical technique [4]:
ideal (proper) imputation would introduce no bias
and would not under-estimate uncertainties [5]. In
contrast, poorly implemented imputation can worsen
results [3, 6, 7]. Judiciously implemented imputation
strategies, while typically not ideal, can often make
significant gains compared to excluding or ignoring.

There are three canonical types of missing data
(‘Missingness mechanisms’): missing completely at
random (MCAR; independently missing), missing at
random (MAR; due to covariates that are not missing),
and missing not at random (MNAR; due to covariates
that are missing, including the missing value itself)
[1]. Higher-order missingness patterns may also be
present [8].

Missing data in gerontology are distinctive for the
high prevalence of MAR and MNAR missingness.
Cognitive and functional deficits that can prevent data
collection are common amongst older adults [9], even
those dwelling in communities. For example, people
living with frailty may be more likely to drop out of
longitudinal studies, causing MAR and MNAR miss-
ingness in later waves to be more common amongst
the frail [10]. Study designs may also neglect to ask

1Suppose we measured N variables for an individual, x⃗ , but
M values are missing. The ignore FI is the mean, fig =∑N−M

i=n xn/(N−M). Imputing fig for missing values also gives
fimpute = (

∑N−M
n=1 xn +

∑M
m=1 fig)/N = fig .

young people about potential deficits that are only
prevalent in older adults, a form of MAR missingness.
Because of the prevalence of MAR and MNAR miss-
ingness, it is important to investigate potential biases
when imputing gerontological data.

The FI operationalizes frailty [11] and is associ-
ated with adverse outcomes [12]. The FI is a number
between 0 and 1 that is the average number of deficit
health variables an individual has [12]. When calcu-
lating the FI, missing data treatment is typically not
disclosed [13], and explicit imputation is seldom per-
formed. Instead, the FI for each individual is typically
computed by simply ignoring/dropping missing val-
ues, effectively replacing them with the average of
the available variables. This is an implicit imputation
strategy. A set of heuristics have built up around this
ignoring strategy, such as inclusion criteria based on
missingness: variables with more than 5% of individ-
uals missing values may be excluded [14], as well
as individuals with more than 20% of measurements
missing [15, 16].

Per-individual and per-variable missingness can
vary substantially between studies, as can the under-
lying missingness mechanism. As a result, heuristics
that improve predictive performance of the FI in one
study may affect another study differently. This het-
erogeneity is an impediment to translating quantitative
heuristics between studies, and limits the development
of the FI as a precision tool [17]. An attractive poten-
tial alternative is to identify good imputation methods
that work for a variety of types and magnitudes of
missingness. The Rotterdam study shows that explicit
imputation models can improve FI predictive power
of mortality [13]. We ask, what is the best available
imputation model to use when calculating the FI?
More generally, how does the choice of missing data
strategy affect the FI?

Multivariate imputation by chained equations
(MICE) is a popular multiple imputation (MI) method
freely available in R [18]. The underlying engine of
MICE is fully conditional specification (FCS), i.e.
sequential regression or chained equations [19], which
iteratively updates each missing variable or model
parameter using the conditional distribution given all
other variables and parameter estimates (i.e. Gibbs
sampling) [4]. Multiple imputation generates a set of
fully sized, completed datasets which allows estima-
tion of both quantitative results of interest and the
uncertainty in those results caused by imputed values.
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MICE has been shown to outperform ignoring
missing data [4], classical approaches including kNN
(k-nearest neighbours) [20], and even deep learning
methods [21, 22]. MICE is popular due to its flexi-
bility, and availability in most statistical software (e.g.
python [20, 23], R [18] and stata [7]).

Conversely, MICE can produce strong biases,
putatively when too many variables/predictors are
included [3, 24]. Since the underlying FCS approach
is not theoretically grounded [19], all MICE models
must be validated empirically. This may explain why
the default MICE option in R for treating continuous-
valued variables is predictive mean matching (PMM),
an ad hoc model from the 1980s that has significant
limitations [5, 25], but has been widely validated [5]
(e.g. [20]).

Here we compare three MICE algorithms for
gerontological data: Default (PMM for continuous
variables and logistic regression for ordinal variables),
CART (classification and regression tree) and RF
(random forest) [18]. We also include two single-
imputation strategies in our comparison: a classical
de facto strategy, kNN [26], and a modern machine
learning approach, missForest [27]. kNN is a
popular, conventional approach that has been shown
to outperform individual (row)-mean imputation for
gene expression data [28]. In contrast, RF approaches
are contemporary machine learning models that have
been shown to modestly outperform kNN in numer-
ous datasets [27, 29]. missForest is a variant
of FCS that includes an automatic stopping strat-
egy to prevent over-fitting and uses an RF prediction
model.

The inclusion of a priori expert knowledge may
enhance imputation, but presents a barrier-to-entry
for non-experts. In the present study we tested inclu-
sion of rule-based imputation (RI) for cases of study
design–related missingness. Young, ostensibly healthy
individuals were not asked questions specific to older
and/or frailer individuals. In RI we assumed these
missing values were optimally healthy. Only a sub-
set of the missing values were missing due to study
design, and therefore RI was always paired with
another missing data handling strategy.

We do not consider other imputation mod-
els, including joint modelling, which conventionally
requires the underlying distribution [18]. Other recent
developments in imputation include tensor factoriza-
tion [30], and deep learning [21, 22, 31–33].

We analysed the effects of missing data and impu-
tation for the National Health and Nutrition Examina-
tion Survey (NHANES) cross-sectional data [34]. Our
objective was to investigate the effects of missing data
and imputation on estimating the FI values and sub-
sequent survival prediction. First, we identified and
grouped individuals by their patterns of missingness.
We then used these observed patterns to artificially
simulate missingness in order to test the performance
of imputation strategies when the true values were
known. We compared the FI-typical ignoring strategy
to several versions of MICE and determined which
strategy best reproduced the true FI and which gave
the best mortality prediction. Using what we learned,
we then applied the most promising imputation strate-
gies to the naturally missing data.

Missingness mechanisms

There are three canonical missingness mechanisms:
missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR)
[1]. These can be defined in terms of [5],

Yall = (Yobs, Ymis), (1)

where Yall is the matrix of all potentially measured
values of interest, including all predictors and out-
comes. Yobs are observed values and Ymis are missing.
The missingness indicator is a matrix, M , with the
same dimensions as Yall , whereMij = 1 indicates that
variable j is missing for individual i.

By definition, values are MCAR if:

MCAR : Pr(M = 1|Yall) = Pr(M = 1) (2)

where Pr indicates the matrix of probabilities. For
example, if you are interrupted while entering data
and skip an arbitrary entry from an arbitrary individ-
ual, then that entry is MCAR. We expect that ignoring
MCAR data will produce unbiased results [35].

MAR is defined by values for which:

MAR : Pr(M = 1|Yall) = Pr(M = 1|Yobs) (3)

For example, in the personal fitness questionnaire
(PFQ) of NHANES 03/04 and 05/06 qualifying par-
ticipants were asked PFQ061A: ‘how much diffi-
culty {do you/does SP} have managing {your/his/her}
money?’ These data are only present for participants
who were aged 60 or older, or answered ‘yes’ to

899GeroScience (2022) 44:897–923



PFQ049, PFQ057 or PFQ059, therefore PFQ is MAR,
so long as we know these (auxiliary) variables. When
the data are MAR we may produce biases if we ignore
the missingness, however, with a sufficiently power-
ful imputation model we can use Yobs and covariates
to estimate the missing values.

Finally, MNAR is defined by:

MNAR : Pr(M = 1|Yall) = Pr(M = 1|Yobs, Ymis)

(4)

For example, suppose an individual is left to fill out
a survey on their own, they read VIQ071: ‘{have
you/Has SP} ever had a cataract operation?’, but
because they have never had problems with cataracts
they skip the question entirely. If the data are MNAR
then a proper treatment will require knowledge of
the missingness mechanism since the dependence on
Ymis could cause severe biases. Nevertheless, due to
correlations in the data we may be able to achieve
satisfactory results using an imputation model that
assumes MAR, such as the imputation models we
tested in this study.

Missingness patterns in the missingness matrix,M ,
may also cause problems. Missingness patterns are a
higher-order statistic that represent whether variables
tend to go missing together. Such patterns can apply
to each of MCAR, MAR, and MNAR. For example,
because of study design many of the variables in PFQ
are often mutually missing. Similarly, individual limi-
tations may prevent data collection of multiple related
variables. In this paper we include a prefix ‘p’ to
indicate the use of patterns (e.g. pMCAR) or ‘c’ to
indicated conventional or cellwise missingness (e.g.
cMCAR).

NHANES data

We used the combined 2003/04 and 2005/06
NHANES (National Health and Nutrition Examina-
tion Survey) cross-sectional study with public-use,
linked mortality files from the National Death Index
[16], with a total of N = 9307 individuals. Inclusion
criteria were: over age 20 (N = 9816), available sur-
vival data (N = 9310), and survival at least one year
post study date (N = 9307). We followed two anal-
ysis pipelines: first we investigated real missingness
by analysing the entire, ‘Full’, dataset (N = 9307),

and then we isolated the N = 1923 complete-case,
‘Complete’, dataset (individuals who had all 68 Frailty
Index variables reported). The Complete dataset was
used to test imputation strategies by simulated miss-
ingness together with ground truth (GT) values.

We calculated the combined lab plus self-reported
(SR) FI using the methodology of Blodgett et al.
[16]. We included 32 lab variables and 36 SR
health variables to calculate the FIs (Supplemental
Tables SXXIII and SXXIV, respectively). SR health
variables were linearly scaled to the range [0,1], while
the lab variables were defined as 0 if they were within
sex-specific healthy ranges or 1 if they were outside of
those ranges (Supplemental Table SXXIII). Lab vari-
ables were converted to binary scale after imputation
to maximize the information available during imputa-
tion. SR variables were converted before imputation
for coding convenience, but maintained their ordinal
type. We used 100 additional variables to test the util-
ity of auxiliary variables for improving imputation
performance (detailed in Supplemental).

Demographic information is summarized in
Table 1. Individuals in the complete-case dataset were
older (p < 2.2 · 10−16), frailer (p < 2.2 · 10−16), died
more often (p < 2.2 ·10−16), and had a worse survival
curve (p = 7.2 · 10−4), relative to the Full dataset.

Methods

Real missingness

We directly analysed missingness of the 68 FI vari-
ables in the Full dataset, which we refer to as ‘real’
missingness. We used the md.pattern function in
R [18] to estimate missingness patterns in the Full
dataset.

Simulated missingness

The process of generating synthetic data with missing
values is called ‘amputation’ [8]. Amputation should
respect the missingness mechanism (MCAR, MAR,
or MNAR) and any salient patterns. MICE incorpo-
rates a standardized amputation approach using miss-
ingness patterns [8], which we modified to handle
larger quantities of data (see Supplemental). These
patterns ensure that amputated data preserve missing-
ness idiosyncrasies. For example, a pair of variables
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Table 1 NHANES dataset summary

Full Complete1

N 9307 1923

Males 4465 (48.0%) 944 (49.1%)

Females 4842 (52.0%) 979 (50.9%)

Age [median (IQR)] 48 (33–66) 68 (62–76)∗∗∗

Age 60+ 3232 (34.7%) 1635 (85.0%)∗∗∗

Age under 60 6075 (65.3%) 288 (15.0%)∗∗∗

Frailty Index2 [mean (sd)] 0.144 (0.078) 0.176 (0.073)∗∗∗

Deaths 1016 (10.9%) 379 (19.7%)∗∗∗

Death age [median (IQR)]3 81.5 (80.7–82.7) 81.2 (78.3–83.9)∗∗∗

Missingness4 14.5% 0%∗∗∗

Aux5 missingness4 12.8% 5.7%∗∗∗

1Comparisons are between individuals in the Complete subset versus the remaining individuals
2Using Ignore
3Log-rank test
4Cellwise missingness rate
5Aux, auxiliary variables

Statistical significance is indicated with * p < 0.05, ** p < 0.01, or *** p < 0.001.

observed with 10%mutual-missingness are amputated
together 10% of the time.

To simulate missingness, we took the Complete
dataset and amputated values using the missingness
patterns of the Full dataset. This generated a new
dataset of the same size but with empty cells repre-
senting missing data. In contrast to real missingness,

we retained the Complete dataset, providing us with a
GT against which we compared our imputed values.
Figure 1 illustrates missingness mechanisms and sim-
ulated missingness of mean arterial pressure when no
higher-order missingness patterns are present.

Amputation was performed using four missingness
mechanisms: cellwise MCAR and MNAR (cMCAR
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Fig. 1 Illustration of missingness mechanisms using complete-
case NHANES blood pressure (BP) data. Black bars and points
reflect the true distribution, blue bars and points are simu-
lated distributions of observed values after applying different
missingness mechanisms. (A) In missing completely at random
(MCAR) the shape of the distribution is preserved but the total
amount of data is reduced. (B) In missing at random (MAR) data

are preferentially excluded according to other related variables.
In this case, individuals with large values of systolic BP were
preferentially set to missing (points), causing a small bias in
the mean arterial pressure distribution (bars). (C) In missing not
at random (MNAR) the value of missing variables affects the
probability they are missing. In this example, we preferentially
excluded high mean arterial pressure values
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and cMNAR, respectively), and patterned MCAR and
MAR (pMCAR and pMAR, respectively). The pat-
terns restricted our maximum simulated missingness
to the same level as the real missingness; we chose
rates of 5%, 10% and 15% (max). We used the same
rates for cellwise missingness, but we were also able
to simulate 25%, 50% and 75% missingness for both
cMNAR and cMCAR. Selection data were normal-
ized to a [0, 1] deficit scale prior to amputation to
prevent problems with the two-sided deficit rule for
the lab variables (see Supplemental Table SXXIII).
cMCAR randomly, and arbitrarily, selected data points
to drop without any patterning. pMCAR and pMAR
used the NHANES patterns determined from the Full
dataset [8]. We confirmed the patterns were correctly
reproduced in the simulated missingness — compare
Supplemental Figures S1 versus S2. We used default
settings for both pMCAR and pMAR, with a prob-
abilistic linear decile exclusion rule [8]. cMNAR is
a novel cellwise approach wherein we applied cuts
directly to the pooled quantiles using the linear decile
exclusion rule. Given that the amputation process is
stochastic, we generated 10 datasets for each combi-
nation of missingness mechanism, patterns, and rate.

Imputation modelling

We performed imputation using the MICE package
(version 3.10.0) [18] in R version 4.0.0 [36]. MICE
uses FCS to iteratively impute missing data using
a prediction model. We compared a representative
sample of prediction models within MICE: logis-
tic regression (logreg), predictive mean matching
(PMM), classification and regression trees (CART),
and random forest (RF). Logistic regression is the
default for binary, ordinal and categorical data,
whereas PMM is the default for continuous variables.
CART is the special case of a RF with 1 tree — both
accept mixed data types. We imputed the default num-
ber of times, m = 5, and combined results using
Rubin’s rules [7], except when estimating predictive
power (we used the average) and visualizing the FI
distributions (we used all values).

Rubin’s rules describe how to properly aggregate
multiple imputations to estimate both the expected
effect (the average), and the uncertainty due to missing
values, using an analysis of variance (ANOVA)–style
decomposition of the between- and within-imputation

variance. The recommended number of imputations
is approximately equal to the percentage of missing
data [7], but a smaller number has conventionally been
regarded as sufficient [5]. As a sanity check, we have
also included a CART m = 15 imputation for each of
our ≤ 15% simulated missingness tests.

We also tested two single imputation (non-MICE)
algorithms: kNN [26] and RF [27]. Our imputation
models are summarized in Table 2.

A priori we know that the PFQ061 variables we
used — the PFQ variable block (personal fitness,
see Supplemental Table SV) — and the RXD vari-
able block (prescription drugs) are all gated variables,
meaning data are missing purposely as part of the
study design. Individuals under age 60 who answered
‘no’ to PFQ049, PFQ057 and PFQ059 were not asked
the PFQ block questions. The RXD block was not
asked for individuals who answered ‘no’ to RXDUSE.
In addition, the VIQ variable block was not asked
for individuals under age 50 [34]. We considered RI
(rule-based imputation) wherein all of the aforemen-
tioned types of missing values were assumed to be
optimally healthy (0 deficit). We applied RI to the real
missingness, supplemented by a variable secondary
imputation strategy for the residual missingness. RI
was not applied to the simulated missingness because
it was based on the Complete dataset which has no
missing values and therefore the conditions for RI are
not satisfied by any individuals.

We also considered inclusion of 100 auxiliary vari-
ables to enhance results. Preliminary results indicated
that CART was the best-performing, hence we tested
auxiliary variables with CART+Aux.

The FI is typically calculated using available-
case analysis, which uses all available data from
included individuals [1]. We considered three ver-
sions of available-case analysis. In the first, typical,
approach missing values were simply ignored when
calculating the FI. Second, we considered Ignore20,
which excluded individuals with over 20% missing-
ness from analysis and ignored missing values for
included individuals [16]. Finally, in the Supplemen-
tal, we considered weighting individuals in any analy-
sis by the fraction of reported variables each individual
has; statistics were only calculated when weighted
models were readily available — excluding the area
under the receiver operator characteristic curve (AUC)
and the hazard rate/ratio (HR).
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Table 2 Imputation model summary

Name Model(s) MI1? Note

RI2 – No Imputed gated as 03

Ignore Row-mean4 No Typical approach

Ignore (weighted)5 Row-mean4 No Linear weights

Ignore20 Row-mean4 No 20% missingness cut

RF RF No 100 trees

kNN kNN No –

MICE Default PMM/logreg6 Yes –

MICE CART CART Yes 1 tree

MICE CART+Aux CART Yes 100 auxiliary variables

MICE RF RF Yes 10 trees

1MI, multiple imputations
2RI, rule-based imputation
3Gated variables were PFQ, RXD and VIQ blocks (Supplemental Table SV)
4Mean value of the available deficit data for each individual
5Results in Supplemental
6PMM for continuous (lab) variables, logreg for ordinal/binary (self-reported) variables

Statistical analysis

Our focus was on how imputation strategies affected
the FI — including the mean, distribution and down-
stream measures calculated from it, such as the HR
and AUC. Simulated missingness was compared to the
GT (ground truth). For real missingness the GT was
unknown and we had to infer imputation quality by
comparing results to the simulated missingness and
assessing survival predictive power.

Survival prediction was based on 4-year-survival
using the AUC [37]. Four-year-survival was selected
because almost all individuals (excluding 2 in the Full
dataset: 1 in the Complete dataset) had survival fol-
lowup for at least 4 years. Preliminary results showed
identical trends using 1-, 2- or 4-year survival; final
results were confirmed by comparing AUC to the
C-index (Supplemental).

We calculated the age/sex-adjusted Cox propor-
tional hazards model as was previously done after
imputing the Rotterdam study [13]. Analysis of
deviance was used to assess predictive power [38].
The FI was scaled by 100 such that the HR was the
increase in hazard per 0.01 increase in FI, consistent
with most FI survival studies [39]. Differences in
survival were tested for using the log-rank test.

To summarize the measures of survival predictive
power, we used the AUC, the HR, analysis of deviance

and the C-index (Supplemental). The AUC [40] and
the C-index [41, 42] are close-relatives, both are des-
cendants of the Wilcoxon non-parametric statistic.
The AUC estimates the probability that a metric will
correctly rank the members of the affected group
ahead of the members of the unaffected group [40] e.g.
the probability that individuals who will die during the
next 4 years currently have higher FIs than non-
terminal individuals. The C-index estimates the prob-
ability that, for every possible pair of individuals, a
metric will correctly rank which individual will be aff-
ected first, e.g. die first [42]. Analysis of deviance is a
generalization of the residual sum of squares [43] and
attributes dispersion (deviance) explained by each var-
iable. The HR is a regression parameter [44] and dep-
ends on the quality/validity of the fit and the scale of the
data; it is an estimate of the relative change in hazard
due to a per unit increment in the predictor variable.

Multiply imputed FIs were aggregated by the mean
for each individual when analysing survival predictive
power to allow fair comparison to single imputation
strategies, since the multiple imputations artificially
increase variability in the FI, and therefore would
likely reduce predictive power

FI distributions were compared using the
Kolmogorov-Smirnov (KS) test. Binary group com-
parisons of continuous variables were made using
Mann-Whitney test, avoiding the complication of
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pre-testing [45]. Categorical vs categorical com-
parisons used Pearson’s χ2 test. Survival curves
were estimated using the Kaplan-Meier estimator
with respect to age. AUCs were compared using the
Delong test [46]. Note that the Delong test includes
an additional 1/N term in the test statistic which
allows significant p-values even when the standard
errors overlap [46]. Generic tests for significance
used the z-test. Statistical significance is indicated
with *p < 0.05, **p < 0.01, or ***p < 0.001. All
confidence intervals are 95%. Error bars are standard
errors, error is reported in parenthesis from last digit,
e.g. 0.0034(12) = 0.0034± 0.0012.

Results

Missingness patterns

As illustrated by Fig. 2, we observed substantial
missingness. In the Full dataset we observed an over-
all missingness of 14.5% (91585 entries), the mean

missingness per individual was 9.8 entries, with a
median of 12 entries (17.6%) and an inter-quartile
range (IQR) of 1 to 15 entries (1.5–22.1%). Individu-
als aged 60+ had significantly less missing data than
individuals under 60 (p < 2.2 · 10−16) and died more
often (p < 2.2 · 10−16). For individuals at least 60
years old, the mean missingness was 2.5 entries, with
a median of 0 entries and an IQR of 0 to 1 entries
(0–1.5%), with a death rate during followup of 26.7%
versus 2.5% for people under 60. Considering the Full
population, while 3606 (38.7%) of individuals were
missing more than 20% of their entries only 203/3606
(5.6%) were at least 60 years old. This means that
3403/6075 (56.0%) of individuals under 60 did not
pass the Ignore20 cut versus 203/3232 (6.3%) of indi-
viduals aged 60+, raising the prospect of age-related
biases with Ignore20.

Missingness was not independent across vari-
ables, with distinct blocks of missingness forming
in the mutually missing histogram (Fig. 2, particu-
larly for younger individuals (under 60). Following
the NHANES naming convention, these blocks were

Young (< 60)

Missingness (%) 0 20 40 60 80

A

PFQ

RXD
VIQ

BPX

LB

Misc

Old (60+)

Missingness (%) 0 4 8 12 16

B

Fig. 2 Mutual missingness histogram. Missingness fraction of
NHANES variables for individuals: (A) under age 60 and (B)
age 60+. These 2D histograms give the mutual missingness
fraction for (row, column) pairs of variables with the diago-
nal corresponding to each variable’s overall missingness. We
see a distinct block structure indicating groups of variables that
are (almost) always missing together, for example the BPX
(blood pressure) 5-variable group appears as a 5 × 5 block. The

variables in each block are provided in Supplemental Table SV.
Observe that in (B) the LB and BPX blocks dominate whereas
the PFQ block is less often missing and contains unpatterned
missingness (strong diagonal terms), in contrast to (A). Note the
scale difference; older individuals had much less missing data.
See Supplemental Figure S1 for the pooled young and old, and
Figure S4 for the per-variable labeled result
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the following: personal fitness questionnaire (PFQ),
number of prescription drugs taken (RXD), vision
questionnaire (VIQ), blood pressure measurement
(BPX), lab measurements (LB) and miscellaneous
(Misc). As shown in Fig. 2 the most commonly miss-
ing variables overall were the PFQ block of data, with
an average cellwise missingness of 53.6% (80.7%
for individuals under 60); at least one was miss-
ing 61.3% of the time (83.5% for individuals under
60). (See Supplemental Table SVI for block variable
demographics.)

As shown in Fig. 2B, the missingness of older
individuals (age 60+) was markedly different. We
observed lower overall missingness, higher variance
of cellwise missingness within blocks, and no visible
block missingness for PFQ or VIQ. These are study-
design effects: PFQ was not routinely collected for
individuals under age 60, while VIQ was not routinely
collected for individuals under age 50 [34].

Missingness-survival effects

Kaplan-Meier survival curves showed that the vari-
able blocks had heterogeneous effects on survival
(Fig. 3). With some blocks of variables showing sig-
nificantly better survival for unmeasured individuals
while others showed significantly worse survival. The
red curves represent individuals with any entry miss-
ing in that block whereas the black curves had all
variables observed. The overall missingness (Fig. 3A)
instead compared the individuals with above aver-
age missingness (red) vs below average missingness
(black).

Missing LB block meant poorer survival, as did
VIQ — for older individuals, and BPX. Conversely,
RXD indicated superior survival. The missing PFQ
block had crossing survival curves, and was an excel-
lent proxy for the full missingness, showing nearly
identical trends for the survival curves. The overall
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Fig. 3 Survival and missingness. Survival curves conditioned
on missingness show that the block patterns of missingness are
strongly related to survival. (A) all variables, (B) personal fit-
ness (PFQ), (C) prescription drugs (RXD), (D) vision (VIQ),
(E) blood pressure (BPX), and (F) lab variables (LB). In (A)
the black line indicates the Kaplain-Meier survival curve for
the subpopulation of individuals missing less than the mean
(9.8 variables), the red line indicates individuals missing more
than the mean. In (B)–(F), black lines indicate subpopulations
without any of the variables in the block missing, red lines have

at least one variable in the block missing. Shaded regions indi-
cate 95% confidence intervals. Insets: hazard ratios (HRs) for
Cox survival model for individuals stratified by young (< 60)
or old (≥ 60), conditioned on age and sex. In (A) the Cox model
is HR per 10. In (B)–(F) each block Cox model was further con-
ditioned on all other blocks (PFQ, RXD, VIQ, BPX and LB).
Note the similarity of (B) PFQ and (A) all, reflecting that PFQ
is a large block of variables and is the most commonly missing
block. See Supplemental Figure S5 for age cut moved to 50, and
Figure S6 for additional variables
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missingness had a complicated effect on survival
where missingness was advantageous at young ages
but crossed to disadvantageous at older ages.

We also investigated hazard using a blockwise-
missingness Cox model with important covariates (sex
and age) (see the insets of Fig. 3). The HRs with
respect to missingness qualitatively agree with the sur-
vival curves: PFQmissingness indicated good survival
for the young and poor survival for the old, RXDmiss-
ingness always indicated better survival but was less
improved for the old, and VIQ indicated no change
in survival for the young and poor survival for the
old. BPX and LB missingness indicated worse sur-
vival, with missingness of LB for the young being
significantly worse then the old. The overall missing-
ness HR for the young (Fig. 3) was less significant
than the PFQ, demonstrating that although the PFQ
is a good proxy there is a reduction in the strength
of the survival effect. In summary, the Cox models
confirmed that the HRs were typically significantly
different from unity, and differed between the young
(< 60) versus old individuals (≥ 60).

Missingness biases the FI

As shown in Fig. 4, the blocks did not contribute
equally to the FI — in particular the distributions of
FI contributions from the blocks are distinct. This sug-
gests that missing an entire block of variables, such as
we observed with patterned missingness, will lead to
biases in the FI if we simply ignore the missing values
(effectively imputing the grey dashed line in Fig. 4).

This bias could be exacerbated by the Ignore20
exclusion rule. The block sizes were: 12 (PFQ), 1
(RXD), 3 (VIQ), 5 (BPX), and 27 (LB). For 68 vari-
ables, the Ignore20 exclusion rule cuts at N = 13.6,
thus any individual missing the complete LB block
would be excluded from analysis.

We can estimate potential bias by using simulated
missingness. As shown in Fig. 5, we note significant
and increasing biases of the FI (orange squares, with
the implicit ignore imputation strategy) as compared
to the ground truth (black dashed line) — for both
pMCAR and cMNAR simulated missingness.

For the patterned missingness observed in the
NHANES data, we developed a quantitative model of
how pMCAR missingness biases the FI. The model
details are presented in Appendix A.We see in Fig. 5A
that the approximate model solution (blue line) as well

as the more complex exact model solution (red points)
agree with the observed FI bias with pMCAR.

Testing imputation with simulated missingness

Using simulated missingness, we explored how com-
mon imputation strategies affected the FI. Overall, we
found that CART performed the best — and that using
auxiliary variables further improved CART perfor-
mance with no apparent downside. Under-performing
imputation strategies, including Ignore, led to signif-
icant biases to both the mean and standard deviation
(SD) of the FI distributions.

Figure 6 shows the distributions of FIs for rep-
resentative imputation methods at 15% missingness.
Imputation of pMCAR caused an increased skew of
the FI distributions for both Ignore and Default, but no
significant changes when CART or CART+Aux were
used. The changes due to the Default (PMM/logreg)
imputation were very significant. cMNAR showed a
similar pattern, although CART also skewed signifi-
cantly, and Default skewed less than Ignore. The FI
distributions for other imputation strategies are shown
in Supplemental Figure S12.

We generally found that the bias in the estimated
mean FI was linear for smaller values of missing-
ness (≤ 15%). This is illustrated in Fig. 5 for CART
and Ignore; for other imputation methods see Supple-
mental Figure S7. Accordingly, we estimated the bias
per unit missingness, i.e. the bias rate, using a linear
zero-intercept regression model. We also calculated
the HR and AUC for each imputed FI at 15% miss-
ingness. The results are summarized in Tables 3, 4, 5
and 6. Blockwise summaries and the C-index are pro-
vided in Supplemental Tables SVII to SXIV (bias) and
Tables SXV to SXXII (predictive power).

As shown in Table 3, for the simplest missing-
ness type, cMCAR, all of the imputation strategies
except for Ignore and CART+Aux had significant bias
rates. Default MICE (PMM) and Mice RF had large
biases: > 0.01 for 15% missingness. For cMNAR, all
of the bias rates were significant except CART+Aux,
although both kNN and RF were small (compared to
the SD).

When missingness patterns from NHANES were
used to generate either pMCAR or pMAR, they also
caused a severe bias in the estimated Ignore FI and
an even worse bias in the MICE default, as shown in
Table 4. The bias rate was significant for all imputation
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Fig. 4 The distribution of block-specific FIs for different vari-
able blocks (labels and fill colours correspond to Figs. 2 and 3).
Plotted values are the mean block FI across the population: bars
indicate the histogram, lines indicate the cumulative distribution
and filled circles indicate the median. y-axis grid lines indicate
quartiles. The overall population mean FI, which is implicitly

imputed by Ignore, is indicated by the dashed vertical grey line.
Observe that the distributions vary considerably between blocks
and the distributions are strongly skewed so that Ignore (dashed
line) is typically well above the median. Plot is truncated at
FI = 0.5 for visualization

methods including Ignore, but was relatively small for
kNN, CART and CART+Aux. CART+Aux achieved a
bias of only 2.7% of the SD at the theoretical limit of
100% missingness.

The SD of the FI was also significantly biased
for most of the imputation strategies — including
Ignore. CART had small bias rates, though still statis-
tically significant, while kNN performed better than
CART for cMNAR, pMCAR and pMAR, but worse
for cMCAR. Overall, CART+Aux performed the best,
having a consistently small bias rate.

Coverage is the probability that the true value of the
mean FI was within the error interval of the imputed

mean FI. CART+Aux had 100% coverage for miss-
ingness ≤ 15%, whereas kNN and the other impu-
tation methods did not (see Supplemental Table SII).
Excluding cMNAR, CART also had 100% coverage.

Increasing the number of imputations using CART
from 5 to 15 made a trivial difference, yielding nearly
identical results (see Tables 3 and 4). The bias rate of
the mean did not change— nor did the coverage (Sup-
plemental Table SII), while the changes to the bias rate
of the SD appeared to be random and small.

In Table 5 we extended cMCAR to higher rates
of missingness. We again observed that the ignore
methods are unbiased estimators of the mean, as is
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Fig. 5 Missingness biases the FI. Using different percentages
of simulated missingness of type (A) pMCAR or (B) cMNAR,
we show the mean FI for different imputation strategies, as
indicated by the legend. The typical, Ignore method (orange
squares) shows the largest bias compared to the ground truth
(black dashed), and for pMCAR the bias is captured by our
approximate (blue line) and exact model (red diamonds), Equa-
tions A.3 and A.5, respectively. The bias is approximately linear

in missingness. Our preferred imputation strategy, CART (green
circles) eliminates the bias for pMCAR and reduces it for
cMNAR. With the addition of auxiliary variables (pink trian-
gles) CART eliminates the bias for both pMCAR and cMNAR.
Error bars and intervals are standard errors. Complete plots for
all types of simulated missingness and imputation are provided
in Supplemental Figure S7
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Fig. 6 FI distributions by imputation type for simulated
15% missingness. (A) pMCAR, (B) cMNAR. Colours: quar-
tiles. Vertical lines: GT quartiles. Stars: KS test signifi-
cance (vs GT). Default was the least similar to the GT for
pMCAR whereas Ignore was the least similar for cMNAR. See

Supplemental Figure S12 for FI distributions of additional
imputation methods. All values from the m = 5 multiple impu-
tations are included for Default, CART and CART+Aux without
aggregation
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Table 3 Imputed FI statistics — cellwise simulated missingness

Imputation Type Mean1 Bias rate2,3 SD1 SD bias rate2,3 HR1 AUC1,4

GT – 0.176 0.000(0) 0.073 0.000(0) 1.075(7) 0.733(36)

Ignore cMCAR 0.176 0.000(1) 0.076 0.014(1)∗∗∗ 1.070(7) 0.728(37)

Ignore20 cMCAR 0.176 0.000(1) 0.075 0.013(1)∗∗∗ 1.071(9) 0.729(41)

Default (m = 5) cMCAR 0.193 0.109(1)∗∗∗ 0.078 0.030(1)∗∗∗ 1.071(7) 0.734(37)

MICE RF (m = 5) cMCAR 0.188 0.073(1)∗∗∗ 0.076 0.017(2)∗∗∗ 1.073(7) 0.734(37)

RF cMCAR 0.177 0.004(0)∗∗∗ 0.074 0.006(0)∗∗∗ 1.074(7) 0.732(37)

kNN cMCAR 0.179 0.012(1)∗∗∗ 0.072 −0.009(0)∗∗∗ 1.076(7) 0.730(37)

CART (m = 5) cMCAR 0.177 0.002(1)∗∗ 0.073 0.002(1) 1.075(8) 0.732(37)

CART (m = 15) cMCAR 0.177 0.002(0)∗∗∗ 0.074 0.004(1)∗∗∗ 1.077(7) 0.733(37)

CART+Aux (m = 5) cMCAR 0.177 0.000(1) 0.074 0.004(1)∗ 1.076(8) 0.735(37)

Ignore cMNAR 0.198 0.142(1)∗∗∗ 0.080 0.046(0)∗∗∗ 1.069(7) 0.732(37)

Ignore20 cMNAR 0.202 0.137(0)∗∗∗ 0.081 0.050(1)∗∗∗ 1.069(7) 0.735(39)

Default (m = 5) cMNAR 0.193 0.109(1)∗∗∗ 0.078 0.029(1)∗∗∗ 1.071(7) 0.733(37)

MICE RF (m = 5) cMNAR 0.188 0.074(1)∗∗∗ 0.076 0.017(1)∗∗∗ 1.073(7) 0.734(37)

RF cMNAR 0.177 0.004(0)∗∗∗ 0.074 0.006(0)∗∗∗ 1.073(7) 0.733(37)

kNN cMNAR 0.179 0.012(1)∗∗∗ 0.072 −0.009(0)∗∗∗ 1.076(7) 0.730(37)

CART (m = 5) cMNAR 0.190 0.092(1)∗∗∗ 0.077 0.025(1)∗∗∗ 1.072(7) 0.735(37)

CART (m = 15) cMNAR 0.190 0.092(1)∗∗∗ 0.077 0.023(1)∗∗∗ 1.074(7) 0.735(37)

CART+Aux (m = 5) cMNAR 0.176 0.000(1) 0.074 0.002(1) 1.075(7) 0.731(37)

5,6

1At 15% missingness
2The bias rate is the theoretical bias at 100% missingness
3p-value for t-test vs 0
4p-value for vs Ignore; Ignore vs GT
5See Supplemental Table SIII for additional results. See Supplemental Figure S8 for forest plot of HRs
6Bold: noteworthy result

Statistical significance is indicated with * p < 0.05, ** p < 0.01, or *** p < 0.001.

CART+Aux. In contrast, kNN showed a large and sig-
nificant bias rate. Furthermore the SD estimates were
biased for all imputation methods. The smallest SD
bias rate was observed for Ignore20 and CART+Aux
— although Ignore20 excluded all of the data for
missingness ≥ 50% and therefore could not be cal-
culated. Interestingly, we saw significant reductions
in HR and AUC at 50% and 75% missingness for
the Ignore methods. Note the increasing HR for kNN
likely masked the apparent drop in predictive power
observed in the AUC. When 75% of data were miss-
ing, the mean FI decreased by 56% for kNN, the HR
fit coefficient, β = log (HR), had to increase by 56%
to compensate for the shrinking scale, resulting in an
expected HR of 1.12— larger than the observed HR of

1.089±0.021. CART+Aux significantly outperformed
Ignore for 50% and 75% missingness (AUC).

Finally, we investigated cMNAR with higher miss-
ingness in Table 6. We observed that all of the impu-
tation strategies produced large biases in the mean
FI, including CART+Aux, illustrating the difficulty of
imputing cMNAR.

We found that when a relatively small fraction of
data was missing, the HR of the FI did not substan-
tially vary across most imputation methods — notably
excluding Default, as shown in Tables 3, 4, 5 and 6,
and Supplemental Figure S8. As such, biases in the
FI affect the absolute but not relative risk assessed —
comparing absolute FI between studies could cause
discrepancies, but comparing relative FI within a study
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Table 4 Imputed FI statistics — patterned simulated missingness

Imputation Type Mean1 Bias rate2,3 SD1 SD bias rate2,3 HR1 AUC1,4

GT – 0.176 0.000(0) 0.073 0.000(0) 1.075(7) 0.733(36)

Ignore pMCAR 0.188 0.076(1)∗∗∗ 0.078 0.029(1)∗∗∗ 1.064(7) 0.729(37)

Ignore20 pMCAR 0.181 0.031(1)∗∗∗ 0.075 0.008(2)∗∗∗ 1.073(12) 0.733(50)

Default (m = 5) pMCAR 0.216 0.238(5)∗∗∗ 0.133 0.388(24)∗∗∗ 1.041(7) 0.697(40)∗∗∗

MICE RF (m = 5) pMCAR 0.168 −0.055(1)∗∗∗ 0.068 −0.032(1)∗∗∗ 1.078(8) 0.732(37)

RF pMCAR 0.161 −0.101(1)∗∗∗ 0.068 −0.035(1)∗∗∗ 1.076(8) 0.726(38)

kNN pMCAR 0.176 0.014(5)∗ 0.072 −0.002(2) 1.071(8) 0.722(38)

CART (m = 5) pMCAR 0.177 0.002(1)∗ 0.073 −0.006(2)∗∗ 1.075(8) 0.733(37)

CART (m = 15) pMCAR 0.177 0.003(1)∗∗ 0.072 −0.009(1)∗∗∗ 1.080(8) 0.733(37)

CART+Aux (m = 5) pMCAR 0.177 0.002(0)∗∗∗ 0.073 −0.002(1) 1.076(8) 0.733(37)

Ignore pMAR 0.187 0.067(1)∗∗∗ 0.075 0.004(1)∗∗ 1.070(8) 0.732(37)

Ignore20 pMAR 0.191 0.029(1)∗∗∗ 0.077 0.020(1)∗∗∗ 1.078(10) 0.742(47)

Default (m = 5) pMAR 0.216 0.244(5)∗∗∗ 0.121 0.279(22)∗∗∗ 1.046(7) 0.697(41)∗∗∗

MICE RF (m = 5) pMAR 0.169 −0.044(1)∗∗∗ 0.071 −0.013(2)∗∗∗ 1.074(8) 0.732(37)

RF pMAR 0.162 −0.092(1)∗∗∗ 0.072 −0.004(2) 1.070(7) 0.728(38)

kNN pMAR 0.179 0.020(4)∗∗∗ 0.074 0.002(1) 1.071(7) 0.721(38)

CART (m = 5) pMAR 0.178 0.013(1)∗∗∗ 0.073 −0.004(2)∗∗ 1.075(8) 0.733(37)

CART (m = 15) pMAR 0.178 0.013(1)∗∗∗ 0.073 −0.002(2) 1.078(8) 0.735(37)

CART+Aux (m = 5) pMAR 0.177 0.005(1)∗∗∗ 0.073 −0.002(1)∗ 1.075(7) 0.734(37)

5,6

1At 15% missingness
2The bias rate is the theoretical bias at 100% missingness
3p-value for t-test vs 0
4p-values for vs Ignore; Ignore vs GT
5See Supplemental Table SIV for additional results. See Supplemental Figure S8 for forest plot of HRs
6Bold: noteworthy result

Statistical significance is indicated with * p < 0.05, ** p < 0.01, or *** p < 0.001

appears valid for most imputation strategies. Reinforc-
ing this, the AUC was similar for most imputation
strategies.

Imputation of real missingness

Given the success of CART when imputing against
simulated missingness, we focused on testing this
strategy with the observed (real) missingness. Ignore
served as the de facto standard, and we included
Default (PMM/logreg) and kNN for perspective. We
also assessed RI as a prospective initial imputation
step, which was paired with a subsequent model
(Ignore, kNN, etc).

We observed a drop in FI with respect to Ignore
for CART, CART+AUX and all of the RI-initialized

methods (Table 7). In contrast, the FI for Ignore20
and kNN was greater than Ignore. We had no GT with
which to directly observe whether the FI was biased
for any particular imputation method. Using our quan-
titative model and assuming MCAR we estimated that
the Ignore method should have a bias in the mean FI of
0.0028 using Eq. A.3 (approximate) or 0.0029 using
Eq. A.5 (exact), both agree well with the difference
between Ignore and CART or CART+Aux. Notably,
this estimate is far smaller than the difference between
Ignore and RI-initialized methods, which were all >
0.01.

Based on the observed missingness patterns, how-
ever, we suspected that the data were primarily
MAR, and hence we also estimated the bias after RI,
which should have removed the majority of MAR
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Table 5 Imputed FI statistics for high simulated cMCAR missingness

Imputation Type Mean1 Bias rate2,3 SD1 SD bias rate2,3 HR1 AUC1,4

GT 0% 0.176 0.000(0) 0.073 0.000(0) 1.075(7) 0.733(36)
Ignore 25% 0.177 0.000(1) 0.077 0.035(2)∗∗∗ 1.068(7) 0.723(38)
Ignore20 25% 0.177 0.000(1) 0.077 0.013(4)∗ 1.079(27) 0.741(101)
kNN 25% 0.153 −0.086(1)∗∗∗ 0.061 −0.052(0)∗∗∗ 1.084(9) 0.716(38)
CART+Aux (m = 5) 25% 0.177 0.001(0)∗ 0.073 0.013(4)∗∗∗ 1.076(8) 0.733(37)

Ignore 50% 0.177 0.000(1) 0.085 0.035(2)∗∗∗ 1.055(7) 0.699(40)∗∗

Ignore205 50% – – – – – –
kNN 50% 0.132 −0.086(1)∗∗∗ 0.048 −0.052(0)∗∗∗ 1.094(14) 0.685(41)
CART+Aux (m = 5) 50% 0.176 0.001(0)∗ 0.079 0.013(4)∗∗∗ 1.074(9) 0.729(37)∗∗∗

Ignore 75% 0.176 0.000(1) 0.106 0.035(2)∗∗∗ 1.035(5) 0.673(41)∗∗∗

Ignore205 75% – – – – – –
kNN 75% 0.113 −0.086(1)∗∗∗ 0.034 −0.052(0)∗∗∗ 1.089(21) 0.637(43)∗

CART+Aux (m = 5) 75% 0.177 0.001(0)∗ 0.085 0.013(4)∗∗∗ 1.076(11) 0.732(38)∗∗∗

6,7

1At 15% missingness
2The bias rate is the theoretical bias at 100% missingness
3p-value for t-test vs 0
4p-values for vs Ignore; Ignore vs GT
5Insufficient data due to Ignore20 cutoff rule
6See Supplemental Figure S9 for forest plot of HRs
7Bold: noteworthy result

Statistical significance is indicated with * p < 0.05, ** p < 0.01, or *** p < 0.001

missingness. The bias in the mean FI for Ignore+RI
was −0.00059 (approximate) or −0.00060 (exact),
which agrees excellently with the differences between
Ignore+RI and CART+RI (−0.006 ± 0.002), and
Ignore+RI and CART+Aux+RI (−0.005± 0.002).

In summary, CART (with or without Aux) appeared
to consistently refine Ignore or Ignore+RI, removing
the residual pMCAR-related bias. Our best estimate
for the bias in the Ignore mean FI was 0.0106 ±
0.0001, which we calculated by adding the estimated
bias in Ignore+RI to the difference between Ignore
and Ignore+RI. This effectively assumed MAR miss-
ingness was corrected by Ignore+RI and the residual
missingness was MCAR and hence could be correctly
calculated using our missingness models, Eq. A.3 and
Eq. A.5. The estimate agrees well with the difference
between the FI using Ignore versus either CART+RI
or CART+Aux+RI.

In Table 8 we report the blockwise FIs for indi-
viduals under age 60, without RI. This was used
to assess imputation quality. We observed that the
blockwise FIs differed between imputation strate-
gies. The qualitative survival effect of missingness

(‘Survival Frailty’ column) was always the same
direction as the CART and CART+Aux imputation
strategies relative to Ignore, indicating good qualita-
tive performance. For example, BPX missingness has
a HR>1 and CART imputations have higher BPX
block FI averages than Ignore. RI agreed with the
qualitative Survival Frailty for PFQ and RXD, but
not VIQ. By design, RI imputed 0 for PFQ, VIQ and
RXD, but only PFQ and RXD had HR ≤ 1. Note that
it is possible that the correct (latent) values to impute
were slightly larger than 0.

In Table 9 we report the blockwise FIs for individu-
als age 60+, without RI. In contrast to Table 8, Ignore
performed much better for the older individuals, with
the FI in the same direction as the survival frailty in
2/5 blocks and for the overall FI, compared to CART
and CART+Aux. Importantly, the Ignore strategy got
the correct direction of the overall effect.

The FI distributions are in Fig. 7. In Fig. 7A we
observed that, excluding RI, the MICE default was the
least similar to the surrogate GT (CART+Aux), as was
the case with pMCAR simulation — though with less
skew than in Fig. 6. The CART FI distribution was
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Table 6 Imputed FI statistics for high simulated cMNAR missingness

Imputation Type Mean1 Bias rate2,3 SD1 SD bias rate2,3 HR1 AUC1,4

GT 0% 0.176 0.000(0) 0.073 0.000(0) 1.075(7) 0.733(36)
Ignore 25% 0.217 0.309(14)∗∗∗ 0.086 0.078(2)∗∗∗ 1.062(6) 0.728(37)
Ignore20 25% 0.252 0.127(1)∗∗∗ 0.095 0.086(2)∗∗∗ 1.068(17) 0.762(72)
kNN 25% 0.183 0.141(12)∗∗∗ 0.071 −0.013(0)∗∗∗ 1.076(7) 0.726(37)
CART+Aux (m = 5) 25% 0.200 0.205(11)∗∗∗ 0.079 0.045(5)∗∗∗ 1.071(7) 0.736(37)

Ignore 50% 0.287 0.309(14)∗∗∗ 0.106 0.078(2)∗∗∗ 1.048(5) 0.715(37)∗

Ignore205 50% – – – – – –
kNN 50% 0.209 0.141(12)∗∗∗ 0.067 −0.013(0)∗∗∗ 1.078(8) 0.713(38)
CART+Aux (m = 5) 50% 0.244 0.205(11)∗∗∗ 0.088 0.045(5)∗∗∗ 1.067(7) 0.734(37)∗∗

Ignore 75% 0.449 0.309(14)∗∗∗ 0.138 0.078(2)∗∗∗ 1.032(5) 0.693(39)∗∗

Ignore205 75% – – – – – –
kNN 75% 0.317 0.141(12)∗∗∗ 0.064 −0.013(0)∗∗∗ 1.063(10) 0.668(44)
CART+Aux (m = 5) 75% 0.363 0.205(11)∗∗∗ 0.115 0.045(5)∗∗∗ 1.062(8) 0.730(37)∗∗

6,7

1At 15% missingness
2The bias rate is the theoretical bias at 100% missingness
3p-value for t-test vs 0
4p-values for vs Ignore; Ignore vs GT
5Insufficient data due to Ignore20 cutoff rule
6See Supplemental Figure S10 for forest plot of HRs
7Bold: noteworthy result

Statistical significance is indicated with * p < 0.05, ** p < 0.01, or *** p < 0.001

significantly different than CART+Aux, although the
difference is not discernible by eye. Taken together,
this suggests that the true missingness was somewhere
between pMCAR and cMNAR, such as a combination
of the two. This is at least partially consistent with our
a priori expectations that PFQ, VIQ and RXD were
pMAR, which was the foundation of our RI strategy.

There was a large shift visible between Figs. 7A
and B due to RI, as can be seen in the last row.
In Fig. 7B we observed only small differences
between the distributions after RI was performed,
with only Ignore+RI being significantly different
from CART+Aux+RI. It appears that the values
imputed by RI were particularly difficult for Ignore
and Default to handle, in the latter case we infer
that, consistent with Fig. 6, patterned missingness
— which RI imputes — seems to be especially dif-
ficult for Default to handle (see also Supplemental
Figure S8).

The prediction accuracy for the real missing-
ness is given in Table 7. We observed that, rel-
ative to Ignore, there was a significant increase in AUC
for both CART (p = 1.7·10−6) and CART+Aux (p =

5.6 ·10−11) methods. The largest changes were signif-
icant decreases in AUC for the Ignore20 method (p =
0.0046, unpaired) and kNN (p < 2.2 · 10−16). All of
the RI-enhanced imputation strategies outperformed
the Ignore method by AUC, except Ignore20+RI. The
best AUC belonged to CART+Aux+RI, with an esti-
mated bias of 0.0107 ± 0.0002 versus Ignore — in
agreement with our calculated bias, and an HR of
1.079 ± 0.004, implying that the FI hazard would
differ by 1.085 ± 0.005 between the two imputa-
tion strategies. The HRs are plotted in Supplemental
Figure S11.

Investigating the effects of missingness via the Cox
model, we confirmed that missingness is a significant
predictor of mortality — with or without consider-
ing age and sex, and had a strong interaction effect
at age 60 (Tables 10 and 11). The interaction term
causes the direction of the hazard to change from pro-
tective (age < 60) to dangerous (age ≥ 60). We also
considered changes due to the FI, and considered sev-
eral imputation strategies (MIs were aggregated as
mean). We observed similar results with and without
RI.
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Table 7 Imputed FI statistics for real missingness

Imputation Mean ‘Bias’1 SD SD ‘Bias’1 HR2 AUC3

Ignore 0.1442 0.0000(0) 0.0782 0.0000 1.077(4) 0.832(17)

Ignore204 0.1611 −0.0170(13)∗∗∗ 0.0801 −0.0019 1.078(4) 0.792(21)∗∗

kNN 0.1601 −0.0160(4)∗∗∗ 0.0710 0.0071 1.073(4) 0.773(21)∗∗∗

Default (m = 5) 0.1466 −0.0024(5)∗∗∗ 0.0877 −0.0095 1.077(4) 0.829(18)

CART (m = 5) 0.1412 0.0029(4)∗∗∗ 0.0816 −0.0034 1.079(4) 0.839(17)∗∗∗

CART+Aux (m = 5) 0.1410 0.0031(3)∗∗∗ 0.0784 −0.0003 1.079(4) 0.841(17)∗∗∗

Ignore + RI 0.1330 0.0112(1)∗∗∗ 0.0803 −0.0021 1.077(3) 0.851(16)∗∗∗

Ignore20 + RI5 0.1327 0.0108(1)∗∗∗ 0.0774 0.0008 1.079(4) 0.848(17)

kNN + RI 0.1302 0.0140(2)∗∗∗ 0.0771 0.0011 1.076(4) 0.841(16)∗∗∗

Default+RI (m = 5) 0.1338 0.0104(2)∗∗∗ 0.0790 −0.0009 1.077(4) 0.850(16)∗∗∗

CART+RI (m = 5) 0.1336 0.0106(2)∗∗∗ 0.0789 −0.0007 1.079(4) 0.851(16)∗∗∗

CART+Aux+RI (m = 5) 0.1334 0.0107(2)∗∗∗ 0.0786 −0.0005 1.079(4) 0.852(16)∗∗∗

6,7

1This is the bias proxy: Ignore − Value
2HR per 0.01 increment in FI, conditioned on age and sex
3p-value for vs Ignore
4N = 5701 individuals
5N = 8728 individuals
6See Supplemental Tables SXXVIII, SXXIX and SSXXX for additional results
7Bold: noteworthy result

Statistical significance is indicated with * p < 0.05, ** p < 0.01, or *** p < 0.001

We observed a large drop in the predictive power
of missingness when conditioned on the Ignore FI but
not any other FI (Table 10), implying that the Ignore FI
captured the missingness survival effect. For the other
imputation strategies, the FI reduced the predictive
power of missingness conditioned on being young.
We saw no significant differences in predictive power

of the FI between the different imputation methods.
The deviance may be less sensitive to differences in
predictive power than the AUC, because the deviance
carries the underlying assumptions of the Cox model.
Note that there was a clear FI position dependence in
the predictive power of sex, probably due to sex dif-
ferences in the FI (e.g. [47]), which appears to have

Table 8 FI of real missingness imputation by blocks, under age 60

Block Ignore Default CART CART+Aux Survival frailty1

All2 0.1218(8) 0.1261(10) 0.1179(8) 0.1176(8) Low

PFQ 0.1151(8) 0.1416(46) 0.0876(32) 0.0865(23) Low

RXD 0.1078(9) 0.0941(18) 0.0962(25) 0.0909(14) Low

VIQ 0.1166(13) 0.0966(34) 0.0947(53) 0.0801(33) No effect

BPX 0.1377(43) 0.2454(222) 0.2367(181) 0.2291(148) High

LB 0.1232(33) 0.1458(43) 0.1449(46) 0.1478(40) High

3

1Frailty inferred from Cox model and Kaplan-Meier curves
2All individuals under age 60
3Bold: noteworthy result
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Table 9 FI of real missingness imputation by blocks, age 60+

Block Ignore Default CART CART+Aux Survival frailty1

All2 0.1862(15) 0.1851(15) 0.1850(15) 0.1852(15) High

PFQ 0.2343(39) 0.2072(84) 0.2042(83) 0.2060(81) High

RXD 0.1335(28) 0.1123(53) 0.1201(61) 0.1302(73) Low

VIQ 0.2740(73) 0.3580(181) 0.3557(193) 0.3732(214) High

BPX 0.2266(62) 0.3290(240) 0.3244(254) 0.3260(245) High

LB 0.2097(62) 0.1605(69) 0.1610(70) 0.1615(67) High

3

1Frailty inferred from Cox model and Kaplan-Meier curves
2All individuals age 60+
3Bold: noteworthy result

bolstered the predictive power of the FI in Table 11,
and which complicates direct comparison of the FI
deviance between Tables 10 and 11.

Discussion

Deng et al. [3] and Sterne et al. [2] showed that
either ignoring missing data or carelessly imputing

values can adversely affect results. We investigated
missingness with NHANES data to understand if and
how the FI changes, and how well the commonly
available imputation models perform. We considered
both standard Ignore and Ignore20 approaches with
the FI, together with a number of explicit imputation
strategies including multiple imputation.

The powerful and commonly used imputation strat-
egy, MICE via FCS, is not formally self-consistent.

***

***

*

***
CART+Aux+RI

Default

Ignore

CART

CART+Aux

0 0.1 0.2 0.3 0.4 0.5
FI

A

*

***
CART+Aux

Default+RI

Ignore+RI

CART+RI

CART+Aux+RI

0 0.1 0.2 0.3 0.4 0.5
FI

B

Fig. 7 FI distributions by imputation type for Full dataset
(real missingness). (A) Without rule-based imputation (RI), (B)
with RI. Observe that RI shifts the FI distribution to lower
values (bottom row is duplicated from the other column for
comparison). Colours: quartiles. Vertical lines are quantiles of

CART+Aux (A) or CART+Aux+RI (B). Stars: KS test signif-
icance vs CART+Aux (A) or CART+Aux+RI (B). All values
from the m = 5 multiple imputations are included for Default,
CART and CART+Aux (including + RI) without aggregation
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Table 10 Cox hazard analysis of deviance — FI first

Model1 Miss Miss|Young2 Deviance age Sex FI

{1}. Miss 15(9)∗∗∗ – – – –

{2}. {1}+Miss|Young 15(9)∗∗∗ 26(13)∗∗∗ – – –

{3}. RIDAGEYR+{2} 15(9)∗∗∗ 24(13)∗∗∗ 7(6)∗∗ – –

{4}. RIDAGEYR+RIAGENDR+{2} 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(13)∗∗∗ –

{5}. FI(Ignore)+{4} 3(5) 7(7)∗∗ 0(1) 84(19)∗∗∗ 406(43)∗∗∗

{6}. FI(Default)+{4} 18(10)∗∗∗ 12(9)∗∗∗ 0(1) 80(18)∗∗∗ 399(43)∗∗∗

{7}. FI(CART)+{4} 18(10)∗∗∗ 12(8)∗∗∗ 0(1) 80(19)∗∗∗ 405(43)∗∗∗

{8}. FI(CART+Aux)+{4} 17(9)∗∗∗ 12(8)∗∗∗ 0(1) 78(18)∗∗∗ 402(44)∗∗∗

{9}. FI(Ignore+RI)+{4} 5(6)∗ 3(5) 0(1) 84(19)∗∗∗ 416(42)∗∗∗

{10}. FI(Default+RI)+{4} 16(9)∗∗∗ 9(7)∗∗ 0(1) 79(18)∗∗∗ 404(42)∗∗∗

{11}. FI(CART+RI)+{4} 17(9)∗∗∗ 8(7)∗∗ 0(1) 80(19)∗∗∗ 409(44)∗∗∗

{12}. FI(CART+Aux+RI)+{4} 19(10)∗∗∗ 9(7)∗∗ 0(1) 78(18)∗∗∗ 409(45)∗∗∗

3,4,5,6

1Deviance was calculated sequentially
2X|Y denotes an interaction between X and Y (‘X given Y’)
3The null model had deviance (−2·log-likelihood) 12480. Young (< age 60) was dropped (never significant)
4p-value for z-test versus 0
5Errors by bootstrapping N = 1000
6Bold: noteworthy result

Statistical significance is indicated with * p < 0.05, ** p < 0.01, or *** p < 0.001

Table 11 Cox hazard analysis of deviance — FI last

Model1 Miss Miss|Young2 Deviance age Sex FI

{1}. Miss 15(9)∗∗∗ – – – –

{2}. {1}+Miss|Young 15(8)∗∗∗ 26(14)∗∗∗ – – –

{3}. RIDAGEYR+{2} 15(9)∗∗∗ 24(13)∗∗∗ 7(5)∗∗ – –

{4}. RIDAGEYR+RIAGENDR+{2} 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(13)∗∗∗ –

{5}. {4}+FI(Ignore) 19(10)∗∗∗ 27(13)∗∗∗ 7(6)∗∗ 42(13)∗∗∗ 405(44)∗∗∗

{6}. {4}+FI(Default) 19(10)∗∗∗ 27(13)∗∗∗ 7(6)∗∗ 42(13)∗∗∗ 413(43)∗∗∗

{7}. {4}+FI(CART) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(14)∗∗∗ 419(42)∗∗∗

{8}. {4}+FI(CART+Aux) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(14)∗∗∗ 413(44)∗∗∗

{9}. {4}+FI(Ignore+RI) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(14)∗∗∗ 412(44)∗∗∗

{10}. {4}+FI(Default+RI) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(14)∗∗∗ 412(43)∗∗∗

{11}. {4}+FI(CART+RI) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(13)∗∗∗ 419(42)∗∗∗

{12}. {4}+FI(CART+Aux+RI) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(13)∗∗∗ 420(43)∗∗∗

3,4,5,6

1Deviance was calculated sequentially
2X|Y denotes an interaction between X and Y (‘X given Y’)
3The null model had deviance (−2·log-likelihood) 12480. Young (< age 60) was dropped (never significant)
4p-value for z-test versus 0
5Errors by bootstrapping N = 1000
6Bold: noteworthy result

Statistical significance is indicated with * p < 0.05, ** p < 0.01, or *** p < 0.001
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FCS builds predictive distributions for each variable
conditioned on the other variables, typically using a
modified prediction model. This approach does not
represent a general factorization of the true joint dis-
tribution [4], and hence a stationary distribution may
not exist. As a result, FCS may impute unrealistic
values, which can become increasingly unrealistic as
more variables are included. Complicating this issue
is the underlying prediction model(s) needed by FCS
which require separate validation for consistency
across datasets. These concerns have been mostly
ignored due to its satisfactory empirical performance
[4, 19]. By including consistency checks on imputed
FI distributions and by quantifying their predictive
power we assessed the validity of several common
MICE and other imputation models in our study.

Simulated missingness We observed poor perfor-
mance for both Default (PMM/logreg) and MICE RF,
which both produced biased FI estimates for the sim-
plest simulated missingness, cMCAR, even with ≤
15% missingness. PMM has previously been shown
to produce biased estimates when imputing MCAR
data [24], reportedly because of high missingness and
too many variables, which were tested up to 64% and
82, respectively. We observed a significant bias even
with 15% missingness and 68 variables. MICE RF
has also been shown to struggle with large numbers
of variables (≥ 200) [3]. Our results indicate that 68
variables may still be too many for either Default or
MICE RF.

Increasing cMCAR to 25%, 50%, and ultimately
75% simulated missingness, we also observed a break-
down of both Ignore and kNN. kNN produced a large,
significant bias in estimating the mean FI and a drop
in the AUC. Ignore showed unbiased estimates of the
mean FI but showed a drop in the AUC and HR, with
the HR reaching 1.055 for 50% missingness — the
same approximate missingness as the PFQ block in
the Full dataset, versus the GT value of 1.075 (Sup-
plemental Figure S8). This change is likely due to
a noisier FI, as indicated by the significant increase
in the SD. Fewer values available to compute the FI
should increase the SD by the Central Limit Theo-
rem. Changes to the SD are important since they affect
hypothesis testing, for example the t-test statistic is
directly proportional to the inverse of the SD: if the SD
is too large our p-values will also be too large (and vice
versa). In contrast to Ignore and kNN, imputing with

CART+Aux was robust even up to 75% missingness,
showing no change in AUC or HR, a trivial change in
estimated mean FI and the smallest change in the SD.

There was a significant bias in the Complete-case
FI estimates using the Ignore method with NHANES
missingness patterns (pMCAR). This bias was absent
when the patterns were not used (cMCAR), implying
the patterns were the cause. pMAR produced similar
results. For 15% missingness, the pMCAR bias was
small but visible in the FI distribution (Fig. 6). The
bias was approximately 0.012, but represents a change
in HR of 1.09. This suggests that the real missingness
data may also produce biased FI estimates and risk
assessment when using the Ignore method.

To confirm and better understand why the bias
was present in pMCAR data, we modelled it as a
consequence of two observations: (1) variables had
different frequencies of missingness and (2) variable
blocks had different distributions of deficit values (see
Appendix A). For example, the PFQ block had the
highest probability of missingness (Fig. 2) and the
lowest median deficit/FI value (Fig. 4). Our calcula-
tion agreed perfectly with the observed bias. This con-
firmed that the pMCAR bias is due to a combination
of differences between variables in their likelihood of
being both deficit and missing; with a small additional
bias due to mutual missingness patterns.

Real missingness CART and CART+Aux imputed
simulated missingness the best, and we have inferred
that they also likely performed well with real miss-
ingness — and better than either Ignore or Default.
The distributions of imputed FIs were very similar to
simulated FIs (compare Fig. 6 vs Fig. 7) and showed
a similar ordering of increasingly skewed FIs from
CART+Aux to Default. Further, changes by variable
block for younger individuals — representing 65%
of our study population, matched changes expected
based on survival, where an increased HR due to miss-
ingness — and therefore higher frailty [48], correlated
perfectly with higher imputed FI values for CART and
CART+Aux versus simply ignoring (see Tables 8 and
9). There was also a small, significant increase in the
AUC of the FI for predicting 4-year-survival using
CART or CART+Aux versus Ignore, implying these
imputed FIs were better measures of frailty than the
Ignore FI.

Notably, neither CART nor CART+Aux was able
to fully compensate for missing expert knowledge
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regarding study design, as inferred from RI. In RI we
assumed gated variables (PFQ, VIQ and RXD) were
all optimally healthy, and in Table 7, saw a substantial
increase in AUC: confirming RI. Validation of RI can
be seen in the survival effects of PFQ and RXD for
young people, which strongly imply the missing gated
variables were healthy (Table 8). VIQ did not follow
this trend, however, and therefore may have been bet-
ter treated using a different imputation model such as
CART. After RI was performed, we did observe that
CART and CART+Aux appeared to correctly fine-
tune the FI such that the residual bias, calculated using
Eq. A.3 and Eq. A.5 was perfectly cancelled. Based on
our results, there appears to be no downside to imput-
ing using CART. The upsides include more accurate
FI estimation and improved mortality prediction, espe-
cially when auxiliary variables are utilized. Imputing
with CART is not a panacea: it did not obviate the need
for RI, but it did improve upon it.

Investigating the underlying missingness mecha-
nism, we observe that the real missingness is of mixed
type. For example, for younger individuals PFQ was
pMAR, since study design skipped those values when
specific covariates were not deficits [34]. For older
individuals PFQ was cMAR or cMNAR given the
lack of patterning and strong relationship with sur-
vival (Figs. 2 and 3, respectively). The FI distributions
(Fig. 7A) showed increasing skewness in the same
order as the simulated pMCAR — from CART+Aux
(least) to Default (most). But the Default distribu-
tion was less skewed than pMCAR, and there was
a significant change in the distribution of CART vs
CART+Aux. Given the similarities of pMCAR and
pMAR in our simulations, the real missingness is
a combination of patterned pMAR or pMNAR, and
cellwise missingness cMAR or cMNAR.

Missingness and survival What is the expected
change in HR per 0.01 increase in FI [39]? This
question cannot be answered precisely without good
imputation practices since, as we have seen, both the
FI and the HR depend on how missing data are han-
dled [13]. High levels of missingness, even in the
simplest case: cMCAR, can cause significant changes
to the estimated HR. We also observed that patterned
missingness can bias the FI on the scale of 0.01 in
both our simulations and, ostensibly, in the real data.
Our simulated patterns were handled well by CART,
whereas the real patterns seemed to be better handled

using RI then fine-tuning with CART; perhaps due
to the increased heterogeneity of the Full population.
In general, correct estimation of the HR and opti-
mal reduction of FI bias require a robust imputation
strategy such as CART.

We observed large differences in survival based
on the missingness of variable blocks (Fig. 3). For
example, individuals under 60 with the personal fit-
ness (PFQ) block missing lived significantly longer
than those with the variable reported — with a max-
imum difference of 17.6 years between the survival
curves. In contrast, individuals missing the lab (LB)
block tended to die younger than those with the vari-
ables reported. We observed heterogeneity between
the variable blocks, with some blocks showing longer,
shorter or equal survivals when absent, and often
showing different survival effects for old versus young
individuals.

Very high levels of missingness occur naturally. For
example the PFQ block was missing at a rate of over
50% in the Full dataset, and over 80% for individuals
under age 60. In the simulated cMNAR, 50% missing-
ness led to a bias in the FI of 0.1110± 0.0030 and an
HR estimate of 1.048 using Ignore versus 1.074 using
CART+Aux (Supplemental Figure S9). Even the rel-
atively benign cMCAR missingness caused the HR to
drop to 1.055 at 50% missingness when using Ignore.
We observed a decrease in the HR (per 0.01 increase
in FI) estimate using Ignore, dropping continuously
from the GT value of 1.075 to 1.032 at 75% cMNAR.
This suggests that with a high missingness the Ignore
method can cause large biases in the HR. No such bias
was observed using CART+Aux.

Although the FI was systematically biased when
ignoring simulated missing data, there was no signifi-
cant change in either AUC or HR for≤ 15% simulated
missingness with either Ignore or CART. Increasing
the missingness to a very high, 75% cMNAR, only
reduced the AUC with Ignore by 1 error bar. Real
missingness (at 14.5%) also showed a small effect on
survival, although there was a significant increase in
AUCwhen using CART versus Ignore, especially with
inclusion of RI and auxiliary variables. The insensi-
tivity of the AUC may be because it describes the
predictive power of all possible FI risk thresholds,
and therefore is not sensitive to a systematic bias,
furthermore, the scale of the bias may have been
too small to significantly change the mortality-risk
dichotomization: it was typically much less than the
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between-individuals variability as measured by the
SD. Instead, bias in the FI affects estimates of relative
risk.

A previous meta-analysis of adjusted FI-HRs
across multiple studies yielded an estimated HR of
1.04 (CI: 1.03–1.04) [39], while our age- and sex-
adjusted FI-HR was 1.08 (Table 7). This unexpectedly
high HR has previously been attributed to the use
of both lab and clinical variables in constructing the
FI [16], and is consistent with earlier work [49, 50].
We can speculate about the role of missingness in
constructing the FI. The opposing survival effects of
missing LB versus PFQ may have helped balance the
adverse effects of Ignore. In general, selection bias
due to missingness could either enhance or deteriorate
the FI. This may help explain the heuristic rules-of-
thumb to limit missing data of variables to < 5% and
of individuals to < 20%. The latter could improve
prediction of the Ignore FI by preferentially exclud-
ing young people, who tend to have bad imputations
(Table 8). We observed in Table 10 that the Ignore
FI usurped the predictive power of missingness, but
this ability may depend on the variables used to con-
struct the FI. The Ignore method pushed FI values
higher for people with missing data, because values
likely to be missing, e.g. PFQ, were almost always
less than the individual-mean (Fig. 4). If the indi-
vidual missing data was older than 60, they were at
higher risk of death (Fig. 3), and therefore the Ignore,
and especially Ignore20, methods would have incor-
porated this missingness-related-risk into the FI. This
effect depends on the specific set of variables selected
for the FI, and so may limit the utility of quantitative
FI comparisons within and between studies.

Imputation strategies with the FI We observed pat-
terned missingness in the Full dataset with a wide
range of missingness from 0 to over 50%. Variables
often went missing together as nearly perfectly corre-
lated blocks. We also observed unstructured missing-
ness, particularly for older individuals.

Although the missing gated variables were best
handled with RI, they also demonstrate clearly the util-
ity of auxiliary variables. For example, the PFQ block
was not reported for individuals under age 60 who
reported ‘no’ to auxiliary variables PFQ049, PFQ057
and PFQ059. In this case these auxiliary variables are
able to convert MNAR (for which there are no general
imputation models) to MAR (which many imputation

models address). Even with MNAR data, auxiliary
variables may still be able to improve imputation
by correlating with the latent cause(s) of missing-
ness. With simulated missingness CART+Aux gave
excellent performance for low levels of cMNAR miss-
ingness. Nevertheless, improvement from auxiliary
variables was smaller with real missingness. This may
be because simulated missingness was not applied to
the auxiliary variables, leading to much lower aux-
iliary variable missingness in the Complete dataset
(Table 1). Our simulations should be considered a
best-case scenario for auxiliary variable performance.

We expected that RF models would perform well
since they are powerful imputation models capable
of handling mixed data with non-linearities and inter-
actions between variables [29]. In the present study
we compared 1 tree (CART) versus 10 trees (MICE
RF) versus 100 trees (missForest). We found that
using only one tree (CART) consistently performed
the best, implying more trees caused over-fitting. Gen-
erally speaking, it is expected that more trees should
reduce over-fitting [51], though the opposite has been
reported for imputation [52]. Similarly, too many pre-
dictors can also lead to a biased MICE RF imputation
[3]. Often, RFs are built by picking a random subset
of input predictor variables for each node, i.e. ‘input
selection’, whereas CART does not [53]. Input selec-
tion could greatly reduce fit quality if there are too
many poor predictor variables, i.e. spurious covariates
[54], since they dilute the pool of available features.
This leads to poorly predicting trees and subsequently
a poorly predicting forest. Input selection would then
reduce accuracy, which could explain the superior per-
formance of CART. A less likely potential source of
over-fitting is tree depth [54].

Why do tree-based imputation methods perform
better? Imputation strategies typically impute values
by randomly drawing or combining ‘nearby’ observed
values. For Ignore, nearby means other values of the
same individual, while for other methods nearby is
determined by a minimum distance. For PMM the
distance is based on linear regression [25], whereas
the distance in tree-based methods (CART and RF) is
determined by iteratively partitioning the data. As a
result, tree-based methods can automatically account
for non-linearities, such as interactions between vari-
ables. Previous studies have demonstrated that tree-
based methods perform well when interactions are
present [52, 53, 55]. Non-linearities are expected in
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our data due to known interactions, such as the sex-
frailty paradox [47], as well as the arbitrary scales
used for questionnaire data and the presence of non-
normally distributed lab data. These may explain the
relatively poor behaviour of the default MICE method
versus tree-based methods. Default struggled notably
with patterned simulated missingness (pMCAR and
pMAR), perhaps because finding a suitable donor
(PMM) or set of predictors (logreg) was especially
difficult due to the large blocks of mutually missing
covariates.

CART was systematically biased high with
cMNAR, along with most other strategies; although,
CART was less biased than Ignore. kNN and
missForest were both unbiased for 15% cMNAR,
although missForest was consistently biased low
and hence probably coincidentally biased in the cor-
rect direction for cMNAR. kNN performed relatively
well with cMNAR but still struggled with ≥ 25%
missingness. Our inability to successfully impute for
cMNAR reflects the difficulty of the underlying prob-
lem, which in general requires knowledge of the bias-
ing mechanism [19]. This may present an opportunity
for imputation models designed specifically for aging
data (e.g. [33]).

General thoughts In our study, the 20% exclusion rule
preferentially excluded young individuals (under age
60), removing 56% of young individuals versus 6%
of older individuals. This radically altered our study
population. Since young people had the least real-
istic blockwise imputation values using the Ignore
method (Table 8) and Ignore generally imputed higher
than the true missing values (Fig. 4), this suggests
that the 20% rule might improve prediction by sim-
ply removing individuals for whom Ignore does not
work well. In our study the 20% exclusion rule also
excluded all individuals missing the lab block, which
preferentially removed individuals with poor survival
prognosis from the analysis (Fig. 3). The effect of 20%
exclusion depends on the specific set of variables used
to calculate the FI. If we had used 10 lab variables
instead of 27, then the 20% cut would be ≥ 10.2,
and only the PFQ block would be excluded, radically
changing the survival effect of excluded individu-
als (Fig. 3). In the present study, survival prediction
dropped significantly when the Ignore20 rule was used
versus Ignore (Table 7). Given the superior perfor-
mance of CART imputation, we see no reason to rely

on heuristic rules such as the 20% rule—which biases
the study population and could lead to unexpected
effects.

Our primary source of error was differences
between the Complete and Full datasets. We consis-
tently observed that survival, frailty and missingness
are interacting variables, and hence the Complete
data had unavoidable differences in the overall FI,
AUC, and mortality rates. Nevertheless, the qualitative
results were similar between the simulated and real
missingness. We consistently saw that the FI calcu-
lated using Default MICE or by ignoring missingness
gave higher values than CART and CART+Aux. The
latter two matched the GT distribution in the simu-
lated missingness data, were consistent with our bias
calculations for real and simulated missingness, and
improved predictive power in the real missingness
data.

We averaged together multiple imputations when
estimating predictive power to estimate the maximum
achievable predictive power versus single imputation
strategies, but this neglected propagation of error due
to imputation hence our confidence intervals were
likely too small for the AUC and HR of the real miss-
ingness. The simulated missingness used Monte Carlo
estimates for the error and therefore should be reliable.
Recent results have implied that m = 5 imputations
may be far too few for accurate estimation of statistical
dispersion [56]; however, when we used the recom-
mended m = 15 imputations [7] on the simulated data
we saw only a small change in the estimated standard
deviation, implying for our low levels of missingness
m = 5 was sufficient.

In the future we would like to investigate missing-
ness structures in other common aging studies. It will
also be interesting to investigate the 5% missingness-
by-variable cut-off that is commonly used in the
literature [14]. Further investigation into MICE may
prove worthwhile, such as the convergence prop-
erties (stability) of FCS and the effect of num-
ber of iterations. Tuning of MICE hyperparameters,
notably of RF including depth, input selection and
number of trees could enhance results, but would
require a diverse set of gerontological studies to do
reliably.

There is room for improvement from CART+Aux,
which had poor performance for high levels of
cMNAR, and struggled with the imputation of real
missingness both for older individuals and for gated
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variables better handled using RI. This performance
might be improved upon with deep learning mod-
els (e.g. [31, 33]), although scepticism is war-
ranted regarding generalizability across datasets, as
lightweight imputation models — including MICE
via CART — have been shown to outperform deep
learning in third-party comparison studies [21, 22].
Quantitative, stochastic modelling of aging naturally
lends itself both to the development of new imputa-
tion strategies and to the ability to generate realistic
datasets to validate imputation strategies. This synergy
presents an opportunity for quantitative researchers to
address a serious pragmatic issue endemic to aging
studies: missing data.

Summary and conclusions

We considered several types of simulated missing-
ness together with naturally missing data. Imputation
of real missingness shared strong similarities with
imputing the simulated missingness. Our results indi-
cate that most imputation strategies, including Ignore
and the MICE default, are weak against at least one
type of missingness. Fortunately, MICE using CART
appeared to be robust, and consistently improved esti-
mation and predictive power over simply ignoring
missing data.

We observed distinct missingness patterns that
bias the standard Ignore (available-case) FI method-
ology, even when missing completely at random
(pMCAR). Imputation with MICE using CART can
remove this bias. We advise caution with other
MICE models, especially with the default method
(PMM/logreg) which made the bias even larger for
our simulated missingness. The MICE RF model
performed poorly and was unreliable — with perfor-
mance dependent on the missingness mechanism, as
were the popular single-imputation strategies of kNN
and missForest. kNN did perform well for ≤ 15%
missingness, but failed even the simplest test case
— cMCAR, for ≥ 25% missingness, and had poor
predictive power with the real missingness.

These same patterns of missing variable blocks
have a significant effect in survival, with the missing-
ness of some variables being predictive of poor sur-
vival, whereas others indicated better survival. These
effects are evidence that missingness should not be
ignored. The FI tended to cancel out survival effects

when using the typical strategy of ignoring missing
values, which may suggest an important cancellation
in the choice of FI variables. For example, the self-
reported and lab variables in this study tended to have
opposing survival effects with missingness. What’s
more, we observed that the heuristic 20% cutoff rule
for individuals missing entries can partially compen-
sate for the limitations of ignoring missingness in
certain types of simulated missingness, but can also
greatly bias the study population.

The FI prediction of mortality appeared to be
robust to missingness, showing only a minor reduc-
tion in AUC even when 75% of the data were made
missing, however, we observed large changes in the
HR estimate for missingness ≥ 25% when miss-
ing values were simply ignored. Good HR estimation
requires imputation. With inclusion of auxiliary vari-
ables, the CART+Aux imputation showed remarkable
consistency in both AUC and HR estimation in the
simulated missingness, even at 75% missingness. We
also observed CART+Aux improved survival predic-
tion (AUC) for the real missingness over ignoring the
missing data.

Our observed improvement in survival prediction
appears to be consistent with previous work using the
Rotterdam study [13], although that study did not pro-
vide a direct measure of predictive power such as the
AUC or C-index. That study also did not fully report
their imputation model — only that they used MICE
— but they found a similar bias in the median FI
of the same scale, 0.01, and in the same direction
as the Default MICE imputation in our study. In our
study this was the same scale and opposite direction
of CART and RI-based imputations, emphasizing the
potential for differences between cohorts and the need
for full disclosure of imputation models.

Our study indicates a hierarchy of increasingly
complex missing data handling for increasingly pre-
cise estimation of the FI and subsequent HR. The
simplest approach is to use the typical Ignore strat-
egy. The Ignore-FI appears to be a simple, composite
health measure of vulnerability to adverse outcomes,
suitable for clinical situations. Unfortunately, ignor-
ing missing data makes the FI prone to bias and hence
inhibits quantitative FI comparisons across popula-
tions and studies. A large improvement in FI preci-
sion and predictive power follows if we apply RI. A
smaller improvement to FI precision follows if CART
is then used to impute remaining values. And finally,
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inclusion of auxiliary variables with CART can safe-
guard against low-levels of MNAR without serious
risk of over-fitting. In situations where fewer rules are
available for RI, imputing with CART using auxiliary
variables becomes increasingly important.

Missing data handling can have a significant effect
on the precision of the quantitative FI, HR esti-
mate, and its mortality predictive power. A standard-
ized approach for handling missingness is needed
to achieve the increasingly high levels of precision
desired in contemporary FI studies, and to facilitate
comparisons between studies and translation across
populations. Researchers should fully disclose their
missing data handling methodology, including impu-
tation model and number of imputations. Basic sanity
checks on imputed values are advisable. It is still
an open question what effect missingness has across
studies and across sets of variables used for the FI. In
the present NHANES-based study, imputation using
the commonly available CART MICE consistently
gave superior FI precision, HR estimation and mor-
tality predictive power over simply ignoring missing
values.

Appendix A. Missingness patterns bias the FI

The complete (binarized) data matrix B has true ele-
ments bij , where the rows i ∈ {1, 2, ..., N} are over
N individuals and the columns j ∈ {1, 2, ..., Nb} are
over Nb variables. The missingness matrix Mij = 1 if
a given entry is missing, and 0 if it was observed. The
overall missingness fraction is π = Nm/(NNb)where
Nm = ∑

ij Mij is the number of missing values in the
dataset.

We define f̄ as the true average FI (Frailty Index)
over the population, so f̄ = ∑

ij bij /(NNb). We
define f̄obs as the average observed FI, so f̄obs =∑

ij (1 − Mij )bij /(NNb − Nm). We define f̄miss as
the average FI of the missing values, so f̄miss =∑

ij Mij bij /Nm. We then have

f̄ = (1 − π)f̄obs + π f̄miss . (A.1)

The true population average, f̄ , only coincides with
the observed estimate, f̄obs , when f̄miss = f̄obs ,
otherwise there will be a bias (for π > 0).

To estimate the bias we assume that the distribu-
tion of missing data across individuals is Pi , across

variables Pj , and across both Pi,j . We would have
Pi,j = ⟨Mij ⟩, where the angle brackets indicates an
average over manymissingness matrices. If we wanted
the distribution of non-missing data P c

i , P
c
j , and P

c
i,j it

would be just be P c = 1−P . Note that
∑

ij Pi,j = 1.
The bias, f̄ − f̄obs can be calculated using Bayes’

theorem as:

f̄ −f̄obs = π

(∑

ij

bijPiPj |i−
∑

ij

bijP
c
i P

c
j |i

)
. (A.2)

We assume no individual-specific selection, i.e. Pi =
1/N . We can approximate the bias by assuming inde-
pendence, Pj |i ≈ Pj , then we have:

f̄ − f̄obs ≈ π

Nb∑

j=1

( 1
N

∑

i

bij
)
(πj − πc

j ) (A.3)

which is plotted as ‘Model (approx.)’ in Fig. 5. Note
that 1/N

∑
i bij requires knowledge of the grouth

truth, unless the data are MCAR. Where π̂j = Pj =∑
i Mij /

∑
ij Mij and π̂c

j = P c
j is:

π̂c
j =

∑
i (1 − Mij )∑
ij (1 − Mij )

= 1 − πNbπ̂j

Nb − πNb
(A.4)

We have Mij directly from the data matrix. Note
that if Pi,j = const. (cMCAR) then f̄obs = f̄miss =
f̄ , in which case the Ignore method would be unbi-
ased. The independence approximation Pj |i ≈ Pj is,
in light of the strong missingness patterns (‘Missing-
ness patterns’), unlikely to be exact. We can instead
estimate Pj |i by assuming independent, identically
distributed individuals (pMCAR), as:

Pj |i =
1
N

∑

i

(1 − Mij )∑
j (1 − Mij )

(A.5)

which, after substitution into Eq. A.2, is plotted as
‘Model (exact)’ in Fig. 5. The key difference is that∑

j (1 − Mij ) varies greatly for patterned missing-
ness. The approximate model posits that the dif-
ference between FI contributions between variables
and blocks causes a bias, whereas the exact model
additionally posits that the specific patterns also con-
tributeto the bias.
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