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Network model of human aging: Frailty limits and information measures
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Aging is associated with the accumulation of damage throughout a persons life. Individual health can be
assessed by the Frailty Index (FI). The FI is calculated simply as the proportion f of accumulated age-related
deficits relative to the total, leading to a theoretical maximum of f � 1. Observational studies have generally
reported a much more stringent bound, with f � fmax < 1. The value of fmax in observational studies appears
to be nonuniversal, but fmax ≈ 0.7 is often reported. A previously developed network model of individual aging
was unable to recover fmax < 1 while retaining the other observed phenomenology of increasing f and mortality
rates with age. We have developed a computationally accelerated network model that also allows us to tune the
scale-free network exponent α. The network exponent α significantly affects the growth of mortality rates with
age. However, we are only able to recover fmax by also introducing a deficit sensitivity parameter 1 − q, which
is equivalent to a false-negative rate q. Our value of q = 0.3 is comparable to finite sensitivities of age-related
deficits with respect to mortality that are often reported in the literature. In light of nonzero q, we use mutual
information I to provide a nonparametric measure of the predictive value of the FI with respect to individual
mortality. We find that I is only modestly degraded by q < 1, and this degradation is mitigated when increasing
number of deficits are included in the FI. We also find that the information spectrum, i.e., the mutual information
of individual deficits versus connectivity, has an approximately power-law dependence that depends on the
network exponent α. Mutual information I is therefore a useful tool for characterizing the network topology of
aging populations.
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I. INTRODUCTION

Humans above the age of 40 experience an exponential
increase in mortality rate with age, known as Gompertz’s
law [1,2]. We can view aging as the accumulation of damage
over time [3]. However, individual health status increasingly
varies as age increases [4]. Quantitative measures of individual
aging-related health that measure the accumulation of damage
throughout a persons life are useful for predicting adverse
outcomes in older populations, such as loss of independence,
hospitalization, surgical complications, and mortality [5,6].

The Frailty Index (FI) is a quantitative age-related mea-
sure of health [5,7–10] that provides a score f ∈ [0,1]. To
determine f , distinct deficits (aspects of age-related health)
are assessed clinically and assigned values of 0 for the
absence of a deficit (healthy) or 1 for the presence of a
deficit (damaged). Each deficit is weighted equally, and f is
calculated as the fraction of damaged deficits, typically using
N ≈ 30 − 40 deficits [11]. Arithmetic provides fundamental
limits of 0 � f � 1.

A large body of clinical and epidemiological work has
shown that the FI correlates strongly with mortality [7,9,12]
and increases nonlinearly with age [13]. In older people, the FI
also correlates with postoperative complications [14,15], risk
of hospitalization, and risk of dependence [16]. Distributions
of the FI broaden with age, capturing the increasing variation
in individual health [8,17]. A broad range of possible
age-related deficits can be used to calculate f [18], indicating
that the FI is robust to the details. Intriguingly, there is an
observed upper limit f � fmax ≈ 0.7–0.8 that is significantly
below the arithmetic limit [8,11,17,19–21]. Nevertheless, the
precise value of fmax, as assessed by the 99th percentile value

of f in a cohort of frail elderly, is not universal. For example,
fmax ≈ 0.5 has been observed in a large UK study using
electronic health records [22] and in the Study on Global
AGEing and Adult Health (SAGE) [23], while fmax ≈ 0.3
from GP records in the Netherlands [24].

To address a possible origin of fmax, we build upon a recent
stochastic network model of aging by Taneja et al. [25]. In
that model, which used a scale-free network topology, nodes
correspond to individual deficits. Local damage and repair
rates depend on the local state of the network; damage of a
particular node is faster and repair is slower as its connected
neighbors become more damaged. The interactions between
deficits capture some of the complex nature of interacting
health conditions. Mortality results in the damage of the
most highly connected nodes, while the FI is assessed from
highly connected nodes that are distinct from the mortality
nodes. This model qualitatively captures the Gompertz-like
exponential growth of mortality rate at later ages, the evolution
of the FI with age, and the broadening of frailty distributions
with age [25]. The network model of Taneja et al. [25]
has no explicit time-dependence in damage or repair rates,
or in its mortality condition. It represents aging as an
autonomous and nonadaptive accumulation of health deficits,
the generally accepted view, and stands in contrast to a
picture of programed aging [26]. Nevertheless, the Taneja
model could only recover observed values of the FI limit fmax

by significantly overestimating mortality in younger adults.
While an underestimation of mortality could be corrected by
mortality processes exogenous to the model, an overestimation
cannot be and so represents a significant open issue.

We are aware of three hypotheses for the origin of the
FI limit. First, that fmax arises naturally in the aging process
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through a large effective repair rate that prevents extremes
of damage or a large mortality rate that makes it extremely
unlikely to live beyond fmax. In terms of a quantitative model,
this amounts to a parameter choice. Taneja et al. could not find
a working parametrization [25]. Furthermore, the observed
nonuniversality of fmax between similar populations, as noted
above, argues against any such intrinsic origin. Second, that
mortality occurs at fmax. Such a threshold networked model has
been developed to explore nonhuman mortality [27], though it
was not used to explore the FI phenomenology. Thresholded
mortality does not explain the nonuniversality of fmax, but
raises an interesting question of programed mortality (as
opposed to programed aging). The third hypothesis that we
propose is novel: that the apparent fmax observed in the clinical
data reflects limited sensitivity of clinical diagnosis of deficits.
Such limited sensitivity is intrinsic to any clinical assessment
due to fundamental tradeoffs with respect to specificity and
can be characterized with receiver operating characteristic
(ROC) curves [28,29]. This third hypothesis provides a simple
explanation of a nonuniversal FI limit, since different studies
include different deficits and will have different sensitivities.
Furthermore, we could reconcile the third hypothesis (but not
the first two) with observed aging phenomenology using our
improved network model.

The significance of the FI is due to its predictive capacity for
health outcomes. This has been assessed parametrically vis-a-
vis mortality, through a proportional [9,12] or quadratic [10]
hazards model. Nonparametric assessment has been mostly
qualitative, through separation of survival curves that are
stratified by the FI; see, e.g., Ref. [22]. Information theory
provides a quantitative and nonparametric measure and has
been proposed for mortality statistics [30,31].

Information entropy or Shannon entropy S(A) [32,33] is
a quantitative measure of uncertainty in a random variable
A with probability distribution p(a). For a discrete (binned)
distribution, then S(A) = −∑

a p(a) ln p(a). Entropies of
conditional death age distributions allow us to quantify the
information added to the unconditioned distribution. If S(A|t)
is the uncertainty remaining about the death age A given
that the person has survived to specific age t , the difference
I (A; t) ≡ S(A) − S(A|t) is the reduction of uncertainty by
knowing the age t—and is the information gained. Similarly,
the information gained by knowing the FI at a given age t will
be I (A; f |t) ≡ S(A|t) − S(A|f,t). If we average over all FI
values given the specific age, the average information gained
by knowing a persons FI at a given age compared to just
knowing their age is I (A; F |t) ≡ S(A|t) − S(A|F,t), where
the capital F indicates an average over values of f . This is
called the mutual information between the death-age and the
FI at a given age t .

We use mutual information to nonparametrically assess the
predictive value of our model FI with respect to the death-age
distribution. We characterize how much information knowing
a persons age adds; how much information the FI adds; and
how much information individual deficits provide. We are
able to address how the predictive information of the FI, with
respect to mortality, is degraded in the face of sensitivity errors.
We find, at the levels called for by the observational fmax,
that the information loss is not substantial. We also find that
information measures are sensitive to the network topology

and so should offer insight into the relations between clinical
deficits.

II. MODEL AND ANALYSIS

Our model is a simplified, extended, and accelerated
adaptation of the model of Taneja et al. [25]. Our model differs
by including a tuneable rather than fixed scale-free exponent
(α), by using exponential (but empirically similar) damage
and repair rate dependence on the fi rather than Kramer’s
rates from an asymmetric double-well potential, by using
two mortality nodes that must be simultaneously damaged
for mortality rather than one, and by significantly improving
the numerical implementation (≈104 speedup) to allow many
more nodes and many more individuals to be simulated

Each individual is represented by a randomly generated
scale-free network consisting of N nodes, where each node
i ∈ {1,2, . . . ,N} corresponds to a deficit that can take on
binary values di = 0 or di = 1 for healthy or damaged,
respectively. Connections are undirected, and all deficits
are initially undamaged at t = 0. When nodes damage or
repair, connections are unaffected. We generate a scale-free
network [34] with degree distribution P (k) ∼ k−α , where k is
the degree of a node, using the Barabási-Albert preferential
attachment model [35], using a linear shift to tune the
exponent α [36]. This allows us to independently adjust
both the exponent α and the average degree 〈k〉. The two
most highly connected nodes are mortality nodes, and when
both are in the damaged state, mortality occurs. (The effect
of different numbers of mortality nodes has been explored
previously [25].) Because of the scale-free character of the
network, mortality nodes are much more connected than most
other nodes in the network. This follows our intuition that
mortality is impacted by many factors.

For the ith node, healthy deficits damage at rate �+ =
�0 exp (fiγ+) and damaged deficits repair at rate �− =
(�0/R) exp (−fiγ−). The damage and repair rates depend on
the average deficit value of all connected nodes, fi . This local
frailty fi is a dynamical variable, since it changes along with
the connected deficits. The other parameters, γ+, γ−, �0, and R,
are all time-independent and the same for all nodes—including
mortality nodes. Transitions are implemented exactly using
Gillespie’s stochastic simulation algorithm (SSA) [37], also
known as kinetic Monte Carlo (kMC), using a binary tree
method to efficiently identify which deficit changes [38].

The FI is calculated as the average deficit value, f =∑n
i di/n over the n most connected network nodes that are

not mortality nodes. These “frailty nodes” typically represent
a small fraction of all deficits and are diagnostic. Since frailty
nodes are highly connected, they should provide a good
measure of the average health of the network—just as the
clinical FI provides a good measure of human health.

Our model results are based on a simulated population
of 107 individuals and N = 104 (number of network nodes).
Each individual network is stochastically evolved in time until
mortality. Our default parameters are γ+ = 10.27, γ− = 6.5,
R = 1.5, n = 32 (number of FI deficits), α = 2.27, and
〈k〉 = 4. The only dimensional parameter is the overall damage
rate, �0 = 0.00113 (per year). Parameters were chosen to
give qualitative agreement with population mortality rates, the
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average FI trajectory, and FI distributions from observational
data. A deterministic version of our model, equivalent to a
maximally connected network, is presented in Appendix A.
In Appendix B we explore the roles of repair rates and the
scale-free exponent α.

We implement finite sensitivity 1 − q through a false-
negative rate q. False-negative rates are applied to every
individual FI and have no effect on the dynamics. For an
uncorrected individual FI value of f0 from n deficits in the
FI, there are n0 = f0n damaged nodes. With a false-negative
rate q, we record only nq damaged nodes where nq is sampled
from the binomial distribution p(nq) = (

n0

nq

)
(1 − q)nq qn0−nq .

We then use f = nq/n as the corrected individual FI. On
average, we will obtain 〈nq〉 = (1 − q)n0. We use a default
false-negative rate of q = 0.3, unless otherwise noted.

Information entropies are estimated directly from a list of
M ordered individual death ages {ai} [39–43]. The entropy is
calculated using

S(A) = 1

M − m

M−m∑

i=1

ln (ai+m − ai) − ψ(m) + ψ(M + 1),

(1)

where ψ is the digamma function [41,43]. We require that
M � m � 1, and we use m = √

M to reduce noise in the
entropy calculation [42,43].

To calculate conditional entropies averaged over the FI,
S(A|F,t), death age lists {ai} are binned by current age and FI.
Then using frailty distributions p(f |t), entropy is calculated
by averaging over the FI: S(A|F,t) = ∑

f P (f |t)S(A|f,t).
This allows us to calculate mutual information, I (A; F |t) =
S(A|t) − S(A|F,t). We are also interested in the information
provided by specific values of the FI; the specific mutual
information. To calculate the specific mutual information
I (A; f |t) = S(A|t) − S(A|f,t), we do not average over the FI.
In this notation, capital letters denote values that are averaged
over, and lower case letters indicate specific values of the
variable. Bin widths of 0.01 are used to average over the FI,
and of 1 year for death-age distributions.

III. RESULTS

Figure 1 shows the model mortality rate versus age in
blue with United States mortality rate statistics [44] in black.
Figure 2 shows the model average FI versus age in blue with
FI data from the Canadian National Public Health Survey
(NPHS) [8] in black. For ages above 40, which is the focus of
our model, we obtain good agreement for the mortality rate
versus age and for the average FI versus age. The agreement
of the age-dependent mortality with our model is better than,
and of the FI phenomenology with our model is similar to,
the agreement that Taneja et al. [25] could obtain. This shows
that including our default false-negative rate (q = 0.3) and
other model adjustments can be accommodated by variations
of the model parameters.

A. FI Limit

Figure 3(a) shows FI distributions for selected age ranges of
Chinese population data from Gu et al. [17]. The limit in FI is
seen as a maximum value around 0.7–0.8. Figure 3(b) shows FI

FIG. 1. Mortality rate vs. age for the model (blue circles) and U.S.
population mortality statistics (black squares). Default parameters
were used for the model, including q = 0.3. Mortality statistics are
from [44]. All ages in this and subsequent figures are in years.
Mortality rates are per year.

distributions from our model using default parametrization but
with q = 0 (no false-negatives). While we are able to capture
the time-dependence of the mortality and FI with q = 0 (data
not shown), and we were able to capture the increasing varia-
tion in individual health with age seen in the FI distributions,
we were unable to capture the FI limit at the same time. We
found the same limitation in a deterministic formulation of our
model (see Appendix A) that could rapidly explore the model
parameters. Our inability to find parameters that recover fmax

agrees what was reported by Taneja et al. [25], despite our
now being able to additionally vary the scale-free-exponent α.

We also examined the second hypothesis, by adding
a mortality condition whenever f > fmax = 0.7 that is in
addition to our standard two-node mortality condition with
q = 0. Figure 3(c) shows the FI distribution from this hybrid

FIG. 2. Average FI vs. age for the model (blue circles) and
observational FI data (black squares). Default parameters were used
for the model, including q = 0.3. Observational data is from Ref. [8].
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FIG. 3. Distributions of the FI in a given age range, p(f |t).
Age ranges are indicated by the legend. (a) Chinese population
observational data from Gu et al. [17]. Note the FI limit around 0.8.
(b) Model distributions without a false negative rate, i.e., q = 0. This
is the first hypothesis for the FI limit. We observe fmax = 1. (c) Model
distributions with additional mortality imposed at f = fmax = 0.7 but
with q = 0. This is the second hypothesis for the FI limit. There is
a discontinuous cutoff in the FI distributions. (d) Model distributions
with our default false-negative rate of q = 0.3. This is our third
hypothesis for the FI limit. We find fmax = 0.78 at the 99th percentile
of the population of 100–105 year olds.

mortality model with an explicit FI threshold. As expected
f < fmax is reproduced. However, a strong discontinuity is
seen in the FI distribution at fmax for older age ranges.
This is not observed in the population data of Fig. 3(a).
Correspondingly, a peak in the mortality versus f is observed
at fmax that is not observed in the population data [45] (data
not shown). While one could consider spreading the mortality
over a range of f to soften these nonanalyticities, the observed
nonuniversality of the observed fmax would remain difficult to
reconcile with this intrinsic mortality mechanism.

Figure 3(d) shows the result using a false negative rate
q = 0.3 (our default parametrization), our third hypothesis for
the origins of the FI limit. This is imposed on the analysis of the
FI only, and has no effect on mortality. We see that a FI limit
is recovered, with fmax = 0.78 at the 99th percentile. We have
already seen that the Gompertz law, Fig. 1, and the nonlinear
increase of the FI with age, Fig. 2, are recovered with q = 0.3.
This appears to be the simplest approach that works within the
context of our model. It has the advantage of naturally explain-
ing the non-universality of fmax in terms of the nonuniversality
of something extrinsic to aging and mortality—namely the
sensitivity (with respect to mortality) of the deficits used in
a given study. Since finite sensitivity (i.e., q > 0) is typically
where clinical assessment operates [29], we view this as a
parsimonious and successful extension to our initial model.

B. Mutual information of the FI and mortality

Figure 4 shows unnormalized death-age distributions, with
number of deaths in 1-year bins from an initial population
of 107 model individuals. Each subfigure corresponds to the
subpopulation alive at the earliest age shown, i.e., 10–90 years
for Figs. 4(a)–4(i), respectively. The thicker dashed black lines
show p(a|t), the death-age distribution conditioned on that
earliest age t , i.e., the number of people that die at each age
a given that they have already lived to age t . The colored
lines, as indicated by the legend in Fig. 4(a), show death-age
distributions conditioned on both age and the FI value f , i.e.,
p(a|f,t). This is the number of people that die at each age a,
given they were alive at age t with f in the indicated range.
As the initial age t increases, more of the population is found
at higher FI ranges. We see that cohorts with lower FI die
later, while cohorts with larger FI die earlier. Summing over
all of the FI cohorts returns the distributions conditioned on
age alone, i.e., p(a|t) = ∑

f p(a|t,f ).
We see from Fig. 4 that increasing the initial age t narrows

the death-age distribution. For all but the youngest initial
ages, conditioning on the FI further narrows the death-age
distributions. This narrowing reflects additional predictive
value due to the FI, which we can quantify with mutual
information.

Figure 5 shows the specific mutual information I (A; t) =
S(A) − S(A|t) of the age t versus t (blue points referring
to the left axis). This is the information gained at a specific
age t compared to having no knowledge of t . The inset
shows constant population entropy S(A) versus the entropy
conditioned on survival to age t , S(A|t). At age 0 years old,
we know only as much as we do for the whole population, so
I (A; 0) = 0. As age t increases, more information is known
about an individual’s death age, as also reflected by the
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FIG. 4. Unnormalized distributions of model death ages a conditional on being alive at t , p(a|t), are shown as thicker dashed black lines.
These are death age or age-at-death distributions. From (a)–(i), the initial age t increases from 10–90 years, as indicated by the earliest age
shown. The original population is 107 model individuals. The coloured lines show the death ages p(a|f,t) conditioned by the FI ranges, as
indicated by the legend in (a). As initial age t increases, more FI ranges are populated. All data is binned in one-year increments. Default
parameters are used, including q = 0.3.

FIG. 5. Information I (A; t) = S(A) − S(A|t) is plotted versus
age t (blue points, left axis). This is the information gained about
a model individual’s death age by knowing their age, compared to
knowing just the population distribution of death ages. The Gaussian
width 2σ (in years) that would provide the same information is also
shown (green points, right axis). The inset shows S(A|t) in blue, and
S(A) as a black dashed line.

narrowing of the death-age distribution with age shown in
Figs. 4(a)–4(i). With the green points (referring to the right
axis) we have shown the width of the Gaussian 2σ that would
give the same information. This allows us to roughly convert
information to an age-range.

Figure 6 shows the specific mutual information I (A; f |t) =
S(A|t) − S(A|f,t) versus age, which is the information gained
by including a FI value in the given range at a given age,
compared to just knowing their age. It is important to note
that this is not comparing the predictive value of just the FI
to the predictive value of just age, but rather the additional
information provided by the FI while also knowing age.
This specific mutual information is not averaged over all FI
values, so it can be negative. The negative values of I (A; f |t)
for older individuals with low frailties indicates that they
have wider (normalized) death-age distributions compared
to the population average at that age. A larger FI is most
informative for younger individuals—and can exceed the
information gained from knowing age alone. As age increases,
the information along each specific FI curve decreases. This is
due to the continually increasing average FI of the population,
together with the narrowing of the death-age distribution due
to increasing age t .
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FIG. 6. Specific mutual information I (A; f |t) = S(A|t) −
S(A|f,t) for distributions conditional on both age and the FI. This
is the information gained by knowing a specific range of the FI,
as indicated in the legend, vs. just knowing their age. The negative
values of I (A; f |t) for older individuals with low frailties indicates
that they have wider (normalized) death-age distributions compared
to the population average at that age.

Figure 7 shows the value of the mutual information
I (A; F |t) for different numbers of deficits n, conditioned at
different ages t . In contrast to Fig. 6, this information is
averaged over all of the FI values. The peak around age 80
means this is where the FI is most predictive on average. The
decrease in information toward the youngest ages is the result
of the preponderance of low FI in the population. For older
individuals age alone becomes very informative (see Fig. 5)—
which reduces the additional information that can be provided
by the FI. As we increase the number of deficits included
in the FI by constant factors we monotonically increase
(approximately logarithmically) the predictive value of the FI.

FIG. 7. Mutual information conditioned on age I (A; F |t) vs. age.
As indicated by the legend, the information increases with increasing
number of deficits n included in the FI. Otherwise, default model
parameters were used—including q = 0.3.

FIG. 8. Mutual information at age 80 years, I (A; F |t = 80), vs.
the false-negative rate q. Each curve corresponds to a different number
n of deficits in the FI, as indicated by the legend in Fig. 7. Other model
parameters have default values.

Figure 8 shows the effect of the false-negative rate q on the
mutual information provided by the FI, at age t = 80 years
(close to the peak from Fig. 7). As we expect, the average
information provided by the FI decreases monotonically as
q increases and vanishes when q = 1. However, for our
default value of q = 0.3 there is only a modest decrease in
the amount of information. We also see that increasing the
number of deficits n in the FI can offset the degradation due
to q. For very large n, there is very little information loss
until very large q. This is essentially because for large n the

FIG. 9. The information spectrum of our deficits: mutual infor-
mation per deficit at age 80, I (A; Di |t = 80) vs. the average network
degree of the deficit 〈ki〉. Deficit indices are ranked in order of
connectivity, and i corresponds to deficits of the same order for
different individuals. Different parameter values of the scale-free
network exponent α are shown, as indicated by the legend. Other
model parameters have default values. The main plot shows the
simulation with a population of 107, and the inset shows a population
of 104.
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false-negative rate still changes f but no longer introduces
significant stochasticity.

Mutual information allows us to reach into the network
topology of our model. Figure 9 shows the information per
deficit versus the average degree of these deficits; we call this
the information spectrum of our model. The two highest degree
points for each curve are the mortality nodes. These nodes do
not follow the general trend on their respective curves, due to
their unique role in the network. We see that normal deficits
with a larger average degree tend to provide more information,
with an approximately power-law relationship at intermediate
degrees. These plots qualitatively explain the diminishing
returns in information as more deficits are added to the FI in
Figs. 7 and 8. Information is plotted for different values of the
scale-free network exponent, α. The information spectrum gets
steeper as α increases. Since the network degree distribution
also gets steeper, there are very few highly informative nodes
at larger α. The inset shows the same analysis with a simulated
population of 104 individuals. We found that the information
spectrum started to be reliable for populations of more than
103 model individuals.

IV. DISCUSSION

Our model is able to recover the average FI versus age,
the exponential increase in Gompertz law of mortality rates,
and the increasing variation in individual health through the
broadening of the FI distributions with age. With our third
hypothesis for fmax, the addition of a false-negative rate q,
we could also recover observed fmax values. By assuming that
q varies between studies, we naturally explain the observed
nonuniversality of fmax [8,11,17,19–24].

Like Taneja et al. [25], we could not make the first
hypothesis, that parameter tuning can recover fmax, work while
retaining the Gompertz law and the average increase of FI with
age—despite much improved computational efficiency and the
ability to vary the scale-free exponent α. Similarly, using an
auxiliary mortality condition at fmax to force the FI limit led to
unobserved discontinuities in the distribution of FI at later ages
[see Fig. 3(c)]. Even if they were made to work, these first two
hypotheses would also need to invoke intrinsic differences in
the aging and mortality processes between cohorts to explain
the observed nonuniversality of fmax.

Binarized deficits, such as used in our model, require
well-defined thresholds or cut-points between states [11]. For
example, continuous-valued blood biomarkers use thresholds
to classify deficits [46]. For realistic measures, this binary
classification introduces false positives and/or false negatives.
This is a well-studied issue when dealing with binary classifiers
of continuous measures [29]. A similar issue should arise
with ordinal deficits, where there are multiple ranked levels of
damage associated with the deficit [11]. We note that such clas-
sification errors are reproducible and do not represent avoid-
able noise or measurement error. Measurement errors would
also contribute to false positives and false negatives [47–50]
but are, in principle, both random and correctable. Never-
theless, the false-negative rate q in our model analysis does
not distinguish between systematic classification errors and
stochastic measurement errors.

Typically, thresholds used to binarize deficits are deter-
mined by standard diagnostic criteria [22] or empirically from
population survival curves [46]. As a thought-experiment, it is
helpful to consider shifting every threshold (or cut-point) from
their standard values. For large-enough thresholds, all deficits
will always be classified as healthy and we will have fmax =
0. In this limit, the sensitivity vanishes. For small-enough
thresholds, all deficits will always be classified as damaged
and we will have fmax = 1. In this limit, the specificity (one
minus the false-positive rate) vanishes. In between, we expect
fmax to continuously depend on the choice of thresholds.
The observation of 0 < fmax < 1 necessarily follows from
having both nonzero specificity and sensitivity. Our bare model
deficits are idealized in this respect, since deficit damage
perfectly correlates with increased local damage rates (perfect
sensitivity) and healthy deficits never contribute to local
damage rates (perfect specificity). Imposing q > 0 on our
model FI appears reasonable, and by doing it we impose a
finite sensitivity with respect to further damage and mortality.

False-negative errors, which correspond to limited sensi-
tivity, are intrinsic to clinical assessment due to the trade-
off between specificity and sensitivity [28,29]. Sensitivity
equals 1 − q. For age-related clinical measures, sensitivities
of ≈0.6–1.0 are reported with respect to various mortality
outcomes [50]—consistent with our overall q = 0.3. Similar
sensitivities of clinical diagnostics are reported in internal
medicine with respect to post-mortem autopsy results [51].

Our current computational model, parameterized with a
false-negative rate, captures the aging phenomenology and
appears reasonable. However, other mechanisms for fmax < 1
might also contribute. We have included a fairly generic
Barabási-Albert scale-free network topology in our model. We
have not explored more structured network topologies [52],
some of which can coexist with a scale-free degree distri-
bution [53]. Recent observational studies have distinguished
between subclinical deficits (from, e.g., blood tests, vital signs,
or electrocardiographic measures) [46,54–56] and clinical
ones (from, e.g., a comprehensive geriatric assessment, or
CGA). We can imagine that such classes of deficits evolve with
different parameters, or differently with mortality or frailty
deficits, and that this might allow fmax to be tuned with model
parameters.

We use our efficient computational model (with q = 0.3)
to generate death-age distributions of a large simulated popu-
lation. Conditioning the population on the current age and/or
current FI generally reduces the range of possible death ages.
The effect of knowing a persons FI can be seen in the narrowing
death-age distributions at a given age and FI. This leads to
an increase in the information known about a persons death
age. With a narrower death age distribution, better estimates
of life expectancy can be made. We quantify this increase
in the predictive value with the mutual information. Mutual
information is a nonparametric measure of the predictive
value of the FI. We also use mutual information to begin to
characterize the spectrum of information of individual deficits
and how they relate to local network topology.

The mutual information I (A; F |t) gives us a way of
measuring the average reduction in uncertainty in the death
age, at a given age, by knowing the FI. The information shows
how well the FI correlates with the death age. It is a measure of
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how well the FI can be used as a proxy of health, with respect
to mortality. We find that this value has a maximum at around
80 years old. This means that on average, the FI will be most
informative of a persons death age when the person is around
age 80. As age increases from 80, people die with both large
and small FI values, making the FI less informative. Similarity
for ages much smaller than 80, most people have a low and
uninformative FI.

The specific mutual information I (A; f |t) gives us the
predictive value of a specific range of FI values. The FI is
most predictive at large values. Age is always a strong factor
in how predictive the FI is, as was seen with, e.g., individual
risk factors of heart disease [57]. This is because the predictive
value of the FI depends on differences between the conditioned
subpopulation and the general population. If a large proportion
of the population have the same FI, this value of the FI does
not offer much in addition to just knowing their age. Even
at very low values of the FI, age itself eventually becomes
more predictive of the death age than the FI. As can be seen
in Fig. 4, death occurs much later for younger individuals
with low FI than for much older individuals with the same
FI. We see similar results in population data (see, e.g., Fig. 2
of Ref. [22]). This is the result of the FI not encapsulating
the full extent of damage in an individual, even though model
mortality is only due to accumulative damage.

The information content of the FI decreases with an
increasing false negative rate q. However, we see only a small
decrease for the false negative rate of 0.3 used in the model to
recover the FI limit. Balancing this, the information content of
the FI increases as the number of deficits included increases.
Qualitatively, a deficit spectrum suggests that including large
numbers of deficits in the FI will lead to diminishing returns.
Indeed, Fig. 8 shows that the information increases approx-
imately logarithmically as the number of deficits increases.
Nevertheless, our model parametrization does not show any
evidence that large numbers of deficits dilute or diminish the
predictive value of the FI. This is in qualitative agreement with
observational data [58,59].

We have shown that the information spectrum of deficits,
shown in Fig. 9, is strongly dependent on the network topology
through the scale-free exponent α—with an approximately
power-law dependence. We also found that (see Appendix B)
α strongly affects mortality statistics. Reinforcing this, a de-
terministic model without network structure (see Appendix A)
significantly changes the mortality behavior of the model, as
well as the evolution of the FI. Probing the network structure
of age-related deficits will be desirable to estimate α and 〈k〉
directly.

Interestingly, our model parametrization shows little sensi-
tivity to deficit repair rate (through R or γ−, see Appendix B).
For our model, this is because damage rates are so strongly
affected by local frailty through �+(f ). Effectively, most
damage occurs when the local frailty is substantial and so any
repair is soon redamaged. Again, for our model, this implies
that deficit repair does not affect longevity statistics or the
overall FI. It will be interesting, and important, to assess the
rate and significance of deficit repair in clinical populations. To
do this, we hope to undertake further analysis of longitudinal
studies in which frailty-trajectories (individual time-series) are
recorded. Since a thorough exploration of parameter space is

not possible due to the “curse of dimensionality,” such direct
estimation of model parameters from observational data is also
needed to test or identify the “correct” parametrization of our
model for human mortality studies.

Our model allows us to rapidly generate large quantities
of high-quality data. For our model, information measures
appear to be useful and reliable with cohort sizes in excess
of ≈103 individuals—which is toward the larger of traditional
observational cohorts. Large quantities of clinical health data
with over 105 individuals are now becoming available through
electronic health records [22]. We have used information
measures with our model data as a first step toward applying
them to these emerging electronic records. We believe that
nonparametric information measures will be an important tool
for characterizing data-sets of large cohorts and will lead to
greater understanding of the relationships between mortality
and health deficits.
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APPENDIX A: DETERMINISTIC NETWORK MODEL

In this appendix we present a deterministic “mean-field”
model of aging that captures some of the basic phenomenology
but treats all deficit nodes identically. Formally, we consider
a maximally connected network in which all nodes are
connected to all other nodes. For computational convenience,
we also take the limit as the number of deficits N → ∞ and as
the number of FI deficits n → ∞. This also demonstrates that
those limits are well behaved. We can then write rate equations
for the dynamical processes, since every deficit will have the
same local frailty f that is identical with the global frailty.

The FI evolves as

ḟ (t) = (1 − f )�+(f ) − f �−(f ), (A1)

where, as before, �+ = �0e
γ+f and �− = (�0/R)e−γ−f .

Mortality is determined by separating the population into
subpopulations, dependent on the state of their mortality nodes
(we consider two mortality nodes, as in the full computational
model, but this mean-field approach can be adapted to include
any number of mortality nodes). Let N0 be the proportion of
people with two healthy mortality nodes, N1 be the proportion
with one damaged mortality node, and N2 be those with two
damaged mortality nodes (i.e., those that are deceased by
our mortality rules). Transitions between these subpopulations
occur by damaging or repairing mortality nodes, so that we
obtain simple dynamics:

Ṅ0(t) = �−(f )N1 − 2�+(f )N0, (A2)

Ṅ1(t) = 2�+(f )N0 − N1[�+(f ) + �−(f )], (A3)

Ṅ2(t) = �+(f )N1. (A4)
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Initially we take N0(0) = 1 with f (0) = 0, corresponding to
the initial conditions of our full network model. We can check
that N0 + N1 + N2 = 1. The current alive fraction will be
N (t) ≡ N1(t) + N0(t), and the current deceased population
N2(t). The instantaneous mortality rate is given by μ(t) =
Ṅ2(t)/N (t). We note that since all nodes are connected to
all others, f is not a stochastic variable (i.e., the distribution
of f is a δ function). Therefore, age and FI provide the
same information about death-ages, and we have no mutual
information with FI in the mean-field model, i.e., I (A; f |t) =
I (A; F |t) = I (A; Di |t) = 0.

Our “mean-field” model is deterministic. Furthermore, we
obtain the same dynamical equations if we impose the same

FIG. 10. FI vs. age, using default model parameters except as
indicated in the legends. The black points are the same population
data shown in Fig. 2. (a) Solid lines indicate our deterministic model
from Appendix A. The red line (R = ∞) has repair rates turned off,
while the purple line (γ− = 0) has the suppression of repair rates
by local frailty turned off. In both cases, the results are close to the
default parameters (green line, R = 1.5). Only when the initial repair
rate greatly exceeds the initial damage rate (blue line, with R = 0.15)
does the FI begin to grow more slowly with age. The light blue points
are the same network model data shown in Fig. 2, while the dashed
black line superimposing the light blue points are network model data
with repair turned off (R = ∞). (b) The network scale-free exponent
α is varied as indicated.

deterministic evolution Eq. (A1) on each local frailty fi of
the ith node, since the only symmetry-breaking mechanism
between nodes is stochastic. The network topology is only
significant in a stochastic model.

APPENDIX B: PARAMETER DEPENDENCE

Figure 10 (a) shows the FI versus age for our deterministic
model. We have used our default parametrization (with
q = 0.3), except where indicated by the legend. The false
negative rate is applied by multiplying f by 1 − q. We
have slower growth of f versus t , but then rapid growth
towards fmax ≈ 1 − q. As indicated by the legend, we can
vary repair significantly and not qualitatively change f (t) in
our deterministic model. This is also seen in our full network
model with the agreement between default parameters (blue
circles) with repair turned off (R = ∞, dashed black line).

FIG. 11. Mortality rate vs. age, using default parameters, except
as indicated in the legend. The black points are the same population
data shown in Fig. 1. (a) Solid lines indicate our deterministic model
from Appendix A. The green line (R = 1.5) has identical parameters
as the network model. The light blue points are the same network
model data shown in Fig. 1, while the dashed black line superimposing
the light blue points are network model data with repair turned
off (R = ∞). (b) The network scale-free exponent α is varied as
indicated.
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Repair appears not to be an important process for our model,
for our default parametrization. In (b) we see that the scale-free
network exponent α affects the evolution of the FI at later ages.

Figure 11(a) shows the mortality rate versus age for our
deterministic model. We have used our default parametriza-
tion, except where indicated by the legend. The data from
our full network model (light blue points) agrees only at
the youngest ages. At later ages, our deterministic model
significantly underestimates mortality. The network topology
allows our full computational model to much better capture the
aging phenomenology. Again, turning repair off (red line with
R = ∞) does not significantly change the mean-field results.

As shown by the dashed black line, turning repair off does not
change the mortality of our full network model. We are in a
parameter regime of the model where repair is not significant
for mortality statistics or for the evolution of the FI.

Interestingly, Fig. 11(b) indicates that the scale-free net-
work exponent α strongly affects mortality statistics. This is in
significant contrast with the relative independence of mortality
on network parameters reported in earlier studies [25,27].
However, those studies did not vary α. This α dependence
emphasizes the need to characterize network topology in
observational studies, with, e.g., the information spectrum of
Fig. 9.
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