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Chiral phase-coexistence in compressed double-
twist elastomers

Matthew P. Leighton, ab Laurent Kreplak a and Andrew D. Rutenberg *a

We adapt the theory of anisotropic rubber elasticity to model cross-linked double-twist liquid crystal

cylinders such as exhibited in biological systems. In mechanical extension we recover strain-

straightening, but with an exact expression in the small twist-angle limit. In compression, we observe

coexistence between high and low twist phases. Coexistence begins at small compressive strains and is

robustly observed for any anisotropic cross-links and for general double-twist functions – but disappears

at large twist angles. Within the coexistence region, significant compression of double-twist cylinders is

allowed at constant stress. Our results are qualitatively consistent with previous observations of swollen

or compressed collagen fibrils, indicating that this phenomenon may be readily accessible experimentally.

1 Introduction

Chiral nematic (cholesteric) liquid crystals can exhibit a double-
twist structure within a cylindrical geometry, in which a molecular
director field n̂ = � sinc(r)f̂ + cosc(r)ẑ has a radius-dependent
twist angle c(r) with respect to the cylindrical axis ẑ. Double-twist
structures are observed in biological systems such as the keratin
macrofibrils in hair or wool,1,2 or the collagen fibrils found in skin,
bone, tendon, and the cornea of the eye.3,4 They are also found
within the ‘‘blue phases’’ of chiral liquid crystal systems.5

Biological tissues often have substantial amounts of inter-
molecular cross-links. Enzymatic cross-linking can mechanically6

and thermodynamically7 stabilize double-twist collagen fibrils –
and is crucial for healthy tissue formation. Substantial disulfide
cross-linking is seen in hair.8 Non-enzymatic cross-linking, due to
advanced glycation endproducts (AGE),9 can also accumulate in
various tissues.

The elastomeric theory developed by Warner et al.10 enables
the calculation of mechanical properties of anisotropically
cross-linked nematic liquid crystals. Previous work has concen-
trated on bulk cholesteric liquid crystals, modelling longitudinal
strains applied perpendicular to the initial molecular director
field – parallel to the cholesteric twist axis. These systems exhibit
a discontinuous director-field reorientation under extension,11

which can indicate a phase transition. Subsequent treatments of
cholesteric systems have considered mechanical response to axial
strains and electromagnetic fields within the limit of linear
elasticity theory,12 as well as phase transition behaviour under

extension and compression with variable chiral solvents.13

Equilibrium phase transitions of cylindrical double-twist elas-
tomers have been considered,14 but without consideration of
mechanical strain effects. Other applications have included
tunable optical15 or acoustic16 properties of these systems.

The mechanical Euler buckling of elastic rods on compression
is well understood, and can be manipulated by micropatterned
materials.17 Phase-coexistence has also been reported under
compression for nanostructured materials18 and under extension
for macrostructured Kirigami materials.19 Chiral-shape instabilities
of axially compressed elastic rods can also be observed and are well
understood.20 However, less attention has been paid to the structure
within compressed elastic materials.

Recent experimental work has demonstrated plastic torsional
buckling in compressed cross-linked (ex vivo) collagen fibrils.21

Since compression in elastomeric systems and the structural
changes within compressed elastomeric double-twist cylinders
are relatively unexplored, we have investigated whether elastomeric
theory could help us understand the coupling between chiral
structure and mechanical strain in these systems. We find that it
does, and that axially compressed double-twist elastomers exhibit
a novel chiral phase coexistence.

Our approach is general. We first compute an expression for
the free energy density for a double-twist elastomer, which
constitutes a full thermodynamic fundamental relation for
the system. Using this fundamental relation as a model we
explore the mechanics of double-twist cylinders under both
extension and compression. We focus in particular on the
changes in molecular orientation as well as the internal stresses
within the elastomer. Under sufficient compression we find
that large twist angles are always observed – so we develop a
general approach valid for all twist-angle functions c(r). We
also develop a small-angle approximation that allows us to
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derive analytic expressions for many properties of collagen
fibrils under both extension and compression.

We limit our numerical studies to two model twist functions –
a rope-like constant twist c = c0 or a linear twist c = ar. A constant
twist angle has been proposed for corneal collagen fibrils.22,23 A
linear twist structure has been proposed for the cores of blue
phases,5 and has been directly observed in hair or wool
macrofibrils.1,2 Double-twist behavior that is close to either
linear or constant twist is also seen in both equilibrium24 and
non-equilibrium7 models of double-twist collagen fibrils.

2 Model

When the cross-link configurational entropy dominates, the
free-energy density within a nematic liquid crystal elastomer
under strain is:10

f ¼ 1

2
mTr ‘

0
lT‘�1l

� �
: (1)

The energy scale m = kBTr is proportional to both temperature T
and the volumetric cross-link density r, where kB is Boltzmann’s
constant. The applied deformation gradient tensor is l. The

tensors ‘
0

and ‘ describe the initial and post-strain structure of

the elastomer in terms of the initial and post-strain molecular
director fields n̂0 and n̂:

‘
0
¼ dþ ðz� 1Þn̂0 � n̂0; (2a)

‘ ¼ dþ ðz� 1Þn̂� n̂: (2b)

Here # indicates a tensor product, and d denotes the unit
tensor. The anisotropy parameter z is the ratio between the
cross-link orientation in the directions parallel to and
perpendicular to the molecular director field n̂. z is typically
taken to be greater than 1 in modelling approaches,10,11 which
is consistent with experimentally observed values of the cross-
link anisotropy in nematic liquid crystals.25,26

We assume that both the post-strain and zero-strain director
fields retain a double-twist structure (Fig. 1), so that n̂ =�sinc(r)f̂ +
cosc(r)ẑ with strain and c0(r) with zero-strain. We consider an
extension or compression by a factor of l along the cylinder axis.
We assume that both ends of an incompressible cylinder are fully
clamped – with no shear or rotation. Our deformation is then
described by the coordinate transform z - lz, r - l�1/2r, and
f - f. The deformation gradient tensor for this deformation is

l ¼

1ffiffiffi
l
p 0 0

0
1ffiffiffi
l
p 0

0 0 l

0
BBBBBBB@

1
CCCCCCCA
: (3)

For small strains, the stress field s, strain field e, and
Helmholtz free energy density f are related by the thermo-
dynamic relation27 sij = (qf/qeij)T,N, where the infinitesimal strain

tensor is e ¼ 1

2
lT þ l
� �

� d. We are specifically interested in

axial (i.e. longitudinal) deformations. The axial stress within the
cylinder (or, e.g., fibril) is then given by

s ¼ @f
@l
; (4)

where we use a scalar s for simplicity. Similarly we use the scalar
e � ezz, so that the axial strain is e = l � 1.

3 Results

Using the deformation gradient tensor eqn (3), for general
double twist director fields n̂0 and n̂ we evaluate the free energy
density defined in eqn (1):

f ðrÞ ¼ m
2

1

l
þ 1

l
1þ ðz� 1Þ sin2 c0

� �
1þ ðz�1 � 1Þ sin2 c
� ��

þ l2½1þ ðz� 1Þ cos2 c0�½1þ ðz�1 � 1Þ cos2 c�

þ1
2
l1=2ð2� z� z�1Þ sin 2c0ð Þ sin 2cð Þ

�
:

(5)

The free energy density, f, constitutes a thermodynamic funda-
mental relation for a strained double-twisted liquid-crystal elasto-
meric cylinder (fibril). The free energy is minimized in equilibrium;
this lets us determine the post-strain twist c(r) along with the stress
within the cylinder. Our expression for f applies for general double-
twist c0(r), extension l, and anisotropy z.

The post-strain twist angle function c(r) minimizes f, so that
qf/qc = 0 for all r. This gives

cðrÞ ¼ 1

2
cot�1

ðzþ 1Þðl3 � 1Þ þ ðz� 1Þðl3 þ 1Þ cosð2c0Þ
2l3=2ðz� 1Þ sinð2c0Þ

	 

;

(6)

where we take c A [0,p/2]. This applies for general c0(r), l, and z.

Fig. 1 Cutaway view of a double-twist cylinder, with the director field
indicated by curved blue lines within the cylinder. The three orthogonal
directions in cylindrical coordinates, r̂, f̂, and ẑ are indicated. The twist
angle c(r) depends on the radial distance within the cylinder, but is
independent of f or z. Adapted from previous work.7
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We can solve eqn (4)–(6) numerically. Common tangent
constructions for phase diagrams are performed using custom
code. All of our numerical and plotting code is available on
GitHub.28 While we only show numerical results below for z4 1,
we note that our analytical results above also apply for z o 1.

3.1 Constant twist coexistence under compression

Using eqn (6), c is plotted as a function of strain e = l � 1 for
various values of constant twist c0 in Fig. 2A, with z = 1.3. We
see that compression monotonically increases c.

Fig. 2B shows the corresponding value of the free energy f,
where we have used the post strain twist angle c that minimizes
f. For sufficiently small c0 we find a substantial coexistence
region between two compressional strains (eH and eL) that can
be identified by a standard common-tangent construction –

with f
0
H ¼ f

0
L and fL ¼ fH þ f

0
HðeL � eHÞ. This coexistence allows

the system to further reduce the free-energy of the system, and
determines thermodynamic equilibrium wherever the free
energy is not a convex function of l.

We show the coexistence region in Fig. 3A for various values
of e, c0, and z. We observe coexistence at sufficiently small z
and e o 0 for all c0 t 0.42, while with c0 = 0 we observe
coexistence at all z a 1 and compressive strains e o 0. One
consequence of the coexistence across different strains is that
the coexistence is also across different twist-angles c – as

determined by eqn (6). In Fig. 3B we show coexistence curves
on the z–s plane for various values of c0. As c0 increases the
extent of the coexistence region decreases – until it disappears
at cc

0 C 0.42385.29

When increasing compressive strains enter the coexistence
region, at e.g. eL in Fig. 3A, a slowly increasing fraction w of the
system will have local strains eH – while the remainder fraction
1 � w will have unchanging strains at eL. This is the ‘‘lever rule’’
of phase coexistence, and we have that w = (e � eL)/(eH � eL)
where e is the average axial strain. In other words, the free
energy f is a linear function of e within coexistence. This implies
that the stress s = qf/ql is constant within the coexistence
region. This constant value was shown in Fig. 3B vs. z. In Fig. 4
we show the constant coexistence region in a plot of stress s vs.
strain e.

3.2 Linear twist inversion under compression

To demonstrate that this phase transition behaviour extends to
more general double-twist director fields, we also consider a
linear twist field c0(r) = csurf

0 r/R – where csurf
0 is the surface twist

and R is the fibril radius. This is a model for, e.g., corneal
collagen fibrils7,24 or keratin macrofibrils.1,2

For this inhomogeneous director field, minimizing the

volume averaged free energy density h f i ¼ 2
ÐR
0 f ðrÞrdr=R2 still

yields eqn (6), since f has no dependence on the derivatives

Fig. 2 (A) The twist angle c as a function of longitudinal (axial) strain e =
l � 1, for various values of c0. Positive and negative strains correspond to
extension and compression of a cylindrical fibril, respectively. (B) The free
energy landscape f/m as a function of strain for several values of c0.
Horizontal brackets indicate the coexistence region for corresponding
values of c0; for c0 = 0.5 there is no coexistence region. In both (A) and (B)
we use a default value of z = 1.3.

Fig. 3 (A) Coexistence regions for various values of c0, plotted versus
cross-linking anisotropy z and strain e. The smaller and larger strain
boundary curves of coexistence are indicated by eL and eH respectively
for c0 = 0. Coexistence is not observed for c0 4 cc

0 E 0.42.29 (B) Within
the coexistence region stress is constant. The coexistence regions are
therefore lines when plotted versus z and stress s/m.
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of c(r). Fig. 5A shows h f i using eqn (6). We see that, like in the
constant-twist case, the free energy is a non-convex function of
the strain for sufficiently small surface twist angles. Thus we still
observe phase coexistence in the case of a linear twist function.

Phase-coexistence for linear twist may be unsurprising, given
coexistence is observed for similar constant twists. However,
near the coexistence region the double-twist function c(r) that

minimizes h f i is no longer linear in r – as shown by the e = eH

curve in Fig. 5B. Furthermore, the twist angle function exhibits
striking changes of both monotonicity and convexity under
larger compressive strains. This can be clearly understood in
the small c0 limit.

3.3 Small w0 limit

The small c0 limit is useful for building intuition for the
system, and is also observed in e.g. collagen fibrils.7,30 From
eqn (6), we can extract the leading behavior for small c0:

cðrÞ ¼
c0ðrÞðz� 1Þl3=2= zl3 � 1

� �
; if zl3 4 1;

p=2 �c0ðrÞðz� 1Þl3=2= zl3 � 1
� �

; if zl3 o 1;

8<
: (7)

where the corrections are O(c0
3). This applies to any twist field

as long as c0(r) { 1 for all r, which explains the observed twist
inversion seen in Fig. 5B.

When c0 = 0, we can illustrate the phase-coexistence calculation
and explicitly show that coexistence is observed for all values of
z a 1. From eqn (5) and (7), we have

f =m ¼
1=lL þ lL2=2; if zl3 4 1;

ð1þ z�1Þ=ð2lHÞ þ lH2z=2; if zl3 o 1;

(
(8)

where we have used lL for the low-twist small-strain branch and
lH for the high-twist large-strain branch. The common tangent
construction for coexistence is given by f 0(lL) = f 0(lH) (which
also determines the constant s = f0 during coexistence), together
with f (lL) � slL = f (lH) � slH:

� 2=lL2 þ 2lL ¼ �ð1þ z�1Þ=lH2 þ 2lHz;

4=lL � lL2 ¼ 2ð1þ z�1Þ=lH � lH2z:
(9)

These equations are easily solved numerically, and corre-
sponds to the thin black curves in Fig. 3.

We can take the z - N limit in eqn (9) and obtain

lH ¼ ð�6þ 2
ffiffiffiffiffi
10
p
Þ1=3z�1=3 ’ 0:69z�1=3, lL ¼ 2lH=ð4�

ffiffiffiffiffi
10
p
Þ ’

1:64z�1=3, and so constant s/m = �2/lL
2 C �0.74z2/3 within the

coexistence region. This illustrates that coexistence can always
be observed under compression, even for z - N, for small
enough c0.

Under extension (and with z 4 1), initial twist-angles always
decrease as l increases – they exhibit strain-straightening. This
can be seen generally in eqn (6), and also in the small-angle
limit in eqn (7). We can therefore self-consistently take the
small angle limit of f in eqn (5) and use eqn (4) to obtain the
stress vs. extensive strain:

s ¼ m l� l�2
� �
� m
ðz� 1Þðl� 1Þðl2 þ lþ 1Þ l3½2zðl3 þ 2Þ � 5� � 1

� �
2l2ðzl3 � 1Þ2 c2

0

þ Oðc4
0Þ:

(10)

We see that for small initial twist angles under extension,
the leading behavior agrees with standard isotropic rubber

Fig. 4 Stress–strain curves of s/m vs. e for constant-twist elastomers with
various initial twist angles. Coexistence is observed for c0 t 0.42, along
with a constant stress between high and low compressive strains: eH and eL,
respectively – indicated with arrows for c0 = 0. Negative strains indicate
compression. We use z = 1.3.

Fig. 5 For cylinders with an initially linear double-twist, c0(r) = csurf
0 r/R. (A)

The volume-averaged free energy hfi/m vs. longitudinal strain e for several
values of csurf

0 as indicated. (B) The post-strain twist angle function c(r) vs.
r/R for various values of applied strain e, given an initial linear twist function
with csurf

0 = 0.3 (corresponding to the dashed orange curve in A). Note that
at eH we observe a qualitative inversion of the twist-function. We use
z = 1.3 in both (A) and (B).
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elasticity. We can also estimate the Young’s modulus E = ds/dl,
and obtain

E = 3m(1 � 3c0
2) + O(c0

4) (11)

at l = 1.

4 Discussion and conclusions

We have considered the effects of axial strain on double-twist
elastomeric cylinders. We have focused on the relatively simple
case of a constant twist angle, like a twisted rope, though our
results also apply to twist angles that depend on radial distance
from the cylinder center. Minimizing the standard entropic
free-energy arising from anisotropic cross-linking, we obtain
standard strain-straightening under axial extension – with a
simple analytic form at small twist angles.

Under axial compression, we have identified a novel phase-
coexistence between high and low twist double-twist phases that
begins at small compressive strains. This phase-coexistence is
observed for initial twist angles up to c0 C 0.42 and for all non-
zero values of the cross-link anisotropy parameter z. Notably,
even an initially achiral cylinder with c0 = 0 will spontaneously
exhibit a strong chiral rotation at moderate compressive strains.
We would expect physical achiral systems to exhibit spontaneous
chiral symmetry breaking as a result.

The chiral double-twist instabilities we describe here appear
to be novel. In particular, they are evident even in an initially
achiral cylinder with c0 = 0. Mechanical transitions in double-twist
elastomers have not been previously studied, to our knowledge.
Xing and Baskaran14 showed that a double-twist configuration was
a good candidate ground state for an unstressed initially isotropic
elastomeric cylinder that was moved into a cholesteric phase – i.e.
due to changing Frank free-energy contributions. We have not
included Frank free-energy terms in our treatment.

Mechanical transitions of strained elastomers have long
been studied, but typically under extensional strain.10,11,31 Both
axial extension13,32 and compression13 of bulk cholesteric elastomers
have been studied. Singular transitions were predicted, though
coexistence was not explored. Since these transitions relied on
relatively weak Frank free-energy contributions, they may be less
robust experimentally than the elastomeric transitions and
coexistence we report.

Ex vivo collagen fibrils appear to be well described by a
double-twist configuration, and to be in the strongly cross-
linked regime that should be dominated by our elastomeric
model.7 Recent experimental studies of collagen fibrils under
both extension33 and compression21 appear to qualitatively
support our results. Under axial extension, Bell et al.33 observed
strain-straightening of the average twist of corneal fibrils. This
is consistent with Fig. 2 and eqn (7). A more detailed analysis of
the differences between fibril strain and D-band strain in
collagen fibrils under extension is in progress.30

Experimentally, compressed ex vivo (cross-linked) collagen
fibrils attached to elastic substrates exhibit buckled regions
that coexist with unbuckled regions along the fibril length.21

Qualitatively consistent with our results is that this coexistence starts
at small compressional strains (below 1%). Also consistent with
coexistence, the amplitude of the buckled regions does not appear to
increase with compressional strain but their frequency of appear-
ance does. Furthermore, the buckled regions exhibit an increased
fibril diameter consistent with the smaller l and increased transverse

1=
ffiffiffi
l
p

predicted from our results in Fig. 3 and eqn (3).
These atomic force microscopy (AFM) studies of compressed

collagen fibrils21 were not able to resolve the fibril twist. However,
much earlier electron microscopy (EM) studies of swollen fibrils
due to urea treatment34 did exhibit the coexistence of strongly
twisted swollen regions of the fibril with less twisted narrower
regions. While these were not studies of compressed fibrils, the
qualitative similarity to our proposed coexistence indicates that
a similar phenomenon may be observed as osmotic pressure is
varied.

We can use our coexistence region plot Fig. 3A to approx-
imate z E 1.1 for e E �0.01 from Peacock et al.21 – where these
are experimental upper-bounds for collagen fibrils from tendon
(with c0 C 0.1). This implies from Fig. 3B that the compressive
stress within coexistence is given by s E 0.02m. Since Peacock
et al.21 reported irreversible plastic damage, we can take this as
an upper bound of the yield stress of collagen fibrils under
compression. Studies of collagen fibrils in compressed bone by
Groetsch et al.35 have determined yield strains of E1% with a
yield stress of s/E E 0.01.36 Since from eqn (11) the Young’s
modulus for an elastomer is E C 3m for small c0, this gives
s E 0.03m – remarkably similar to our estimate.

Polarization-resolved second harmonic generation (P-SHG)
microscopy, a technique which takes advantage of non-linear
optical phenomena to measure volume-averaged anisotropy within
a sample, could potentially be used to measure the change in
molecular twist within different types of collagen fibrils under
extension or compression. P-SHG anisotropy measurements of
collagen-rich tissues such as full tendons have been made in
recent years,37,38 however no experimental measurements have
yet been made at the single-fibril level. Measurements of twist
within strained fibrils would allow our model to be tested further.

Mechanical effects of coexistence may be easier to detect from
detailed stress–strain curves. At coexistence, substantial compres-
sive strains can be realized at constant stress – as detailed in Fig. 3
and 4. Short biaxially strained cylinders embedded within an
elastic substrate39 provide an accessible geometry for exploring
the compression effects we describe here. Long and unsupported
double-twist cylinders under compression would exhibit Euler
buckling, which might complicate axial strain application and
estimation. However, lateral reinforcement can significantly
increase the load that can be applied to long cylinders without
buckling.40 As discussed above, compressive studies have been
done by attaching single fibrils to pre-stretched elastic substrates21

though stress is not easily measured in that configuration.
Strain coexistence implies that applying compressive strains

above eL leads to compressive strains at eH. We call this ‘‘strain-
leveraging’’ – after the lever-rule of phase-coexistence. As such,
very high strains may be achieved for isolated double-twist
cylinders. Since this may also lead to plastic damage,21 it is
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interesting to speculate that in vivo ultrastructure – such as
closely packed fibrils within tendon – may suppress chiral
buckling much as it suppresses Euler buckling40 – due to the
radial expansion that would be exhibited by these instabilities.

While our focus is on thermodynamic equilibrium elasto-
meric configurations, an interesting dynamical consequence
would be observed if the system was rapidly mechanically
‘‘quenched’’ to a compressive strain within the spinodal region,
with q2f/ql2 o 0, where the system will spontaneously nucleate
both phases. We would expect interfaces between the coexisting
phases to have excess free-energy, as described by a more
detailed treatment that includes gradient terms in the director
field and characterized by Frank elastic coefficients.7 To reduce
such interfacial costs, the system would then slowly ‘‘coarsen’’
towards bulk coexistence. Such coarsening could be exception-
ally slow since it would not be driven by interfacial curvature41

but instead by exponentially-small interactions between distant
interfaces.42 As such it may be experimentally accessible, and
could provide details of the non-elastomeric contributions to
the free-energy.

Two open questions remain in terms of our calculation. The
first is the effect of the Frank free-energy terms for a weakly cross-
linked elastomer. We anticipate a rich phase-diagram under
compression. The second is the role of shear deformations when
strained fibrils are allowed to freely rotate – as might be expected
in some experimental setups. We will address this second ques-
tion in future work.30
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