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Modelling lifespan reduction 
in an exogenous damage model 
of generic disease
Rebecca Tobin 1,2, Glen Pridham 1 & Andrew D. Rutenberg 1*

We model the effects of disease and other exogenous damage during human aging. Even when the 
exogenous damage is repaired at the end of acute disease, propagated secondary damage remains. 
We consider both short-term mortality effects due to (acute) exogenous damage and long-term 
mortality effects due to propagated damage within the context of a generic network model (GNM) 
of individual aging that simulates a U.S. population. Across a wide range of disease durations and 
severities we find that while excess short-term mortality is highest for the oldest individuals, the long-
term years of life lost are highest for the youngest individuals. These appear to be universal effects 
of human disease. We support this conclusion with a phenomenological model coupling damage and 
mortality. Our results are consistent with previous lifetime mortality studies of atom bomb survivors 
and post-recovery health studies of COVID-19. We suggest that short-term health impact studies could 
complement lifetime mortality studies to better characterize the lifetime impacts of disease on both 
individuals and populations.

The emergence of novel diseases—such as COVID-19, Ebola, SARS, Zika, avian flu, or monkeypox—is a 
worsening  trend1. Every new disease raises urgent questions about how they could impact infected individuals 
and the population at large. Yet observational studies offer answers only in retrospect. How can a priori knowledge 
inform us before new diseases are studied and characterized? One approach is to identify potentially universal 
effects of disease. This approach may also be useful for existing diseases that are not yet fully characterized.

Rapidly increasing mortality with age of infected individuals is a common feature of many infectious 
 diseases2–9. For example, short-term mortality due to COVID-19 rises approximately exponentially with age—
more than 30-fold from 55 to 85  years10,11. Many infectious diseases also exhibit long-term complications, 
exemplified by post-acute ‘sequelae’ (PAS)—for example, SARS and  MERS12,  Ebola13,  Zika14, ‘long COVID’15, 
and COVID  complications16. Surprisingly, we do not know the long-term effects of most PAS, how they depend 
on age, or how they compare to the impact of short-term mortality. This is because there are very few long-
term, large-scale studies of the impact of acute disease; most studies are limited to less than 5 years. One 
notable exception is the study of lifetime mortality impacts of exposure to the atomic bombs at Hiroshima and 
 Nagasaki17,18. While this does not represent the effects of disease, it does represent the long-term effects of acute 
exogenous damage.

Understanding age-effects of disease is particularly important. For example, assuming that short-term 
mortality is the only impact of acute diseases implies that immunization of older individuals will  typically19 
save more years of life than immunizing younger  individuals11,20. However, if post-acute health impacts of 
disease—including PAS—lead to substantial shortened lifespans then immunizing young individuals could save 
more years of life. Resolving these questions of age-effects for individual diseases is not easily done, since lifetime 
observational studies require many decades.

A promising a priori approach is to computationally model the age-effects of disease. This first requires a 
model of normal aging. Encouragingly, aging populations exhibit simple and universal behavior. Average human 
mortality rates exhibit an exponential increase with age known as Gompertz’  law21, which is reminiscent of the 
increased short-term mortality of disease with age. Individual health can be captured by the frailty index, which 
measures damage and  dysfunction22. Before death, individuals accumulate damage approximately exponentially 
with  age23, leading to worsening individual  health24. The random but inexorable accumulation of damage during 
aging can be modelled at the individual level by a complex network of binary health attributes (healthy or not)25, 
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where damage propagates stochastically across static links (edges). Such a “Generic Network model” (GNM) of 
human aging recovers the population-level behaviour of mortality and  health26–29.

A GNM model provides a dynamical context for propagating damage due to disease. We can model the onset 
of disease by treating it as an exogenous event that further damages an individual. As such, we can also consider 
any exogenous damage—and are not specifically limited to disease. While the generic nature of the health 
attributes in the GNM precludes a detailed study of specific diseases, its generic nature allows us to identify and 
characterize potentially universal effects of disease in aging individuals.

We will consider the effects of disease timing (onset age), severity, and duration. We will first consider excess 
mortality (fatality) rates due to disease. To assess the long-term impact of diseases we also need to consider years 
of life lost due to damage originating from disease. We can use years of life lost within different time horizons to 
compare short and long-term impacts of disease. We also develop and explore a simplified phenomenological 
model of how exogenous damage leads to earlier mortality.

Generic network model (GNM) of disease and exogenous damage
The GNM represents individual health by an undirected scale-free  network30. Links, defining network topology, 
are static. Nodes are dynamic binary health attributes—either damaged or not. A summary measure of individual 
health is the frailty index (f)22,24, which is the fraction of damaged nodes. An undirected scale-free network is 
generated using the Barabási–Albert preferential attachment  model31, with an average node degree 〈k〉 and scale-
free exponent αGNM . Nodes are initially undamaged at age t = 0 , but damage at a rate Ŵ+ = Ŵ0 exp(γ+fi) , where 
fi is the fraction of damaged neighbours for node i. Damaged nodes repair at a rate Ŵ− = (Ŵ0/R) exp(γ−fi) , 
though repair has a negligible effect on population statistics in practice. Individual mortality occurs when the two 
most connected nodes are both damaged. We use previously determined GNM  parameters26,28 that approximate 
sex-combined USA population health and mortality  statistics32 for ages t � 20 : �k� = 4 , αGNM = 2.27 , Ŵ0 = 
0.00183, γ+ = 7.5, with small repair ( γ− = 6.5 and R = 3.0 ) and N = 104 nodes. For simplicity and clarity we do 
not use a false-negative  correction26 to reduce the range of f to [0, 1− q]—i.e. we use q = 0 and have f ∈ [0, 1] . 
Stochastic dynamics are exactly  sampled33. All plotted data corresponds to at least 106 simulated individuals. 
Errorbars for averages, unless indicated, are smaller than point sizes. All times are in years.

The GNM models damage from all sources that arises during the aging process, including the propagation 
or amplification of earlier damage. It then captures mortality effects due to that damage. Since the GNM is 
parameterized from population health and mortality statistics, it implicitly includes many extrinsic events such 
as disease or injury—the usual stressors of living. As such we expect that the GNM will allow us to model the 
effects of an individual disease, which we here consider as additional or perturbative to the normal aging process 
in order to estimate its effect.

We will not model details of the disease process, rather we will simply assume the disease starts (e.g. due to 
infection) at some onset age ton and lasts for a duration τ . In a similar spirit we will assume that the disease has 
a fixed severity or magnitude m. In terms of the GNM, our model disease damages a fraction m of nodes at the 
onset age ton . While formally m ∈ [0, 1] , we do not damage already damaged nodes so m is kept small. We exclude 
individuals from analysis who have initial damage f > 1−m . For m ≤ 0.02 no individuals are excluded, while 
for m = 0.05 a small fraction ( 10−4 ) are excluded for ton ≥ 90 . At the end of the disease (at ton + τ ) a fraction r of 
the applied damage is removed. The fraction r of damage that is removed is a recovery or “resilience” parameter. 
For acute diseases we typically use r = 1 , while chronic diseases could be modelled with r = 0 (equivalently, 
τ → ∞ ). Since we model disease by introducing exogenous damage m at time ton , and allow for a fraction r to 
be repaired after τ through resilience, we can use the same model for any exogenous damage. The effect of our 
model disease is illustrated in Fig. 1a with respect to the frailty index f. The control population with no disease 
is indicated by the grey dashed line. We see that even with r = 1 there is excess damage �f  left in the individual 
after the end of the disease. This residual damage leads to long-term mortality effects that we characterize. We 
compare these long-term effects with the short-term acute effects that we also characterize.

We measure long-term mortality using the average reduction in lifespan ( �ttot ) and also by the average years 
lost within a window of w years after the disease ( �tw ), assuming the mortality rate of the control population 
after that window. All disease results are with respect to a large control population with no disease ( m = 0 ). The 
excess probability of death due to the disease corresponds to an excess infection fatality rate (IFR) as compared 
to the control population.

GNM results
Our GNM model disease has a significant impact on long-term health, as shown by the average frailty index (f) 
vs age for large simulated populations that received a disease (blue points and solid line) or did not (grey dashed 
line) in Fig. 1a. With maximal resilience ( r = 1 , our default acute disease) all of the damage introduced at ton is 
removed after τ . Nevertheless excess damage propagates within the GNM and remains at ton + τ , as indicated by 
�f  . For a variety of onset ages, and for selected durations τ as indicated, we show �f  in Fig. 1b. We see that �f  
increases with onset age, and also that the individual variability of propagated damage (indicated by the shaded 
regions) is large. This reflects the stochastic nature of damage propagation within the GNM.

In Fig. 2a, we show the excess mortality during an acute disease (IFR) vs onset age ton . The IFR increases 
monotonically with ton for all m and τ investigated, and maintains an approximately exponential age dependence 
similar to the all-causes mortality curve ( µ , grey squares). In Fig. 2b, we show the total years lost due to disease 
( �ttot ) vs the onset age. Strikingly, we see that the average reduction in lifespan is highest for younger populations 
(note the log-scale). There are two mechanisms that could contribute to the reduction of lifespan of younger 
individuals. The first is that mortality during the disease leads to more years of life lost for younger individuals—
who have more years left in their life expectancy. The second is that long-term mortality effects could be worse 
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for younger individuals. We can separate these effects by considering different observation windows w after the 
disease.

In Fig. 3a, we show the average years lost �tw within a window of duration w after the end of the disease. We 
account for all excess mortality between ton and ton + τ + w . Just considering deaths during the disease ( w = 0 , 
yellow open triangles), we find that older populations have the largest number of years lost—as observed with, 
e.g., COVID-1920. Even though younger individuals have more lifespan left to lose, it is not enough to offset their 
much lower IFR. However, for younger ages years lost due to deaths during the disease account for only a small 
fraction of the total years lost. As we increase w, �tw increases, and its peak shifts towards younger ages. The 
largest lifetime impact ( �t∞ ≡ �ttot , blue squares) is for the youngest individuals, in agreement with Fig. 2b. 
This effect holds for a wide range of τ and m parameter values, see Supplemental Figs. S2 and S3. Strikingly, the 
peak (mode) of lifespan impact only moves away from the oldest ages with long observation windows of w � 20 
years. The ratio of lifespan reduction �ttot/�t0 exceeds 100 for the youngest onset ages, and does not strongly 
depend on duration τ or severity m (Supplemental Fig. S1). The ratio will further increase for lower resilience 
( r < 1 ) since acute mortality, IFR, and acute life lost, �t0 , are unchanged but mortality after the disease is 

Figure 1.  (a) Model disease. A disease is represented by exogenous damage of severity m inserted at onset time 
ton ; a fraction r of the original damage is then removed after duration τ . Excess damage that is left at ton + τ 
is indicated by �f  . The average damage vs age, as assessed by the frailty index (f, the fraction of damaged 
nodes within the GNM), for an acute disease with r = 1 , m = 0.05 , ton = 50 and τ = 5 is indicated by the 
blue points. A control population (with m = 0 ) is indicated by the grey dashed line, and is well approximated 
by an exponential f = aeαt where a = 0.0548± 0.0009 , α = 0.0314± 0.0003 , and t is the age—as indicated 
by the solid grey curve. (b) Excess damage. Increase in the frailty index at the end of an acute disease, �f  at 
t = ton + τ , with severity m = 0.02 vs onset age ton , with duration τ as indicated by legend and r = 1 . The 
shading indicates the standard deviation of �f  . All ages and times, in this and other figures, are in years.

Figure 2.  (a) Mortality. Excess probability of death during the disease (IFR) vs onset age ( ton ) for 
acute diseases with duration τ as indicated, and m = 0.02 . Square grey markers indicates the all-causes 
mortality rate (per year) vs. age from the U.S. population (2010)34. Exponential fit (solid black line): 
(4.3± 0.3)× 10−5 exp [(0.089± 0.001)ton] . Male (M) and female (F) sub-populations are as indicated. (b) 
Lifespan reduction. The average total reduction in lifespan due to disease, �ttot , vs. onset age ton for severity 
m = 0.02 and duration τ as indicated by legend, with r = 1 . Chronic disease corresponds to τ = ∞ (or r = 0).
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increased due to larger residual damage �f  . For example, in Fig. 3b with r = 0 we show that �ttot is more than 
ten-fold larger than with r = 1.

Phenomenological model of disease and exogenous damage
While the GNM allows for stochastic and high-dimensional individual health trajectories, the connection 
between modelling assumptions and phenomenological behavior is obscured by its complexity. A simpler 
model would be more interpretable—allowing us to see how and when our modelling assumptions lead to the 
behavior we see. A simpler model would also be easier to generalize. While other mean-field versions of the 
GNM  exist26,28, here we develop a simple model that is directly rooted in the observed aging phenomenology: 
damage accumulates non-linearly with age and this damage drives mortality. The essential simplification here 
is that the health-state is described only by the average damage—rather than by the many interconnected nodes 
of the GNM. This phenomenological model complements our network-based simulations using the GNM, and 
can be easily modified for different phenomenological assumptions.

We start with the observation that the average damage, or frailty index, increases approximately  exponentially35 
with age f0(t) = aeαt . From the GNM, we have α ≈ 0.031 (and a ≈ 0.055 , see Fig. 1) which is consistent with 
observational estimates for adults with t � 20 ( α ≈ 0.035± 0.0235). We assume that exogenous damage, such as 
from disease or injury, forms part of—and behaves similarly to—the damage exhibited during aging. As such it 
satisfies the differential equation df /dt = αf  and any exogenous damage m grows exponentially thereafter. By 
including resilience, we then have simple expressions for the average damage before, during, and after the disease:

where

is the propagated damage at the end of the acute disease (at tend = ton + τ , and with resilience r).
This phenomenological damage model is already considerably simplified compared to the GNM: we have 

a single deterministic health state variable (f) rather than N = 104 distinct and stochastic health-nodes. By 
comparing our expression for the propagated damage �f  (Eq. 2) with Fig. 1b, we see that the phenomenological 
model has a single value of �f  that is independent of onset age ton while the GNM has a broad range of �f  with 
an average that increases with ton—though by much less than the individual variability.

We also need an explicit mortality model. We use the well-established but phenomenological Gompertz  law36 
of µ0 = beβt , whereby the mortality rate of adults increases exponentially with age. We estimate β ≈ 0.089 (and 
b ≈ 4.3× 10−5 , see Fig. 2a). We then assume that the increasing mortality rate results only from the increasing 
frailty-index f(t). To obtain the correct time-dependence for mortality from f0 ∝ eαt we have

(1)f (t) =







aeαt t < ton,

aeαt +meα(t−ton) ton < t < ton + τ ,

aeαt +�f eα(t−(ton+τ)) t > ton + τ ,

(2)�f = m(eατ − r)

(3)µ = b(f /a)β/α .

Figure 3.  Lifespan reduction for different observation windows. (a) The average years lost �tw vs ton for 
different observation windows w past the end of acute disease (with r = 1 ). The effects of mortality during the 
disease ( w = 0 ) are largest for older individuals, even though the younger individuals have more lifespan left to 
lose. The effects of lifetime mortality ( w → ∞ ) are largest for younger individuals, demonstrating the impact 
of residual damage. All with τ = 1 and m = 0.02. (b) �ttot for a chronic disease ( r = 0 ). The lifetime effects 
( w → ∞ ) are much larger than in Fig. 3a.
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This expression will hold for both the disease and control populations, since by assumption the mortality is 
expressed only through the health. With a disease, for t > tend we can express this as

where fend = f0(tend) = aeα(ton+τ) is the control (non-disease) frailty at the end of the disease. Note that a chronic 
disease corresponds to a disease with no resilience—i.e. r = 0 . A similar expression for the hazard applies during 
the disease, with the ratio �f /fend replaced by m/fon.

The lifetime mortality rates, µ(t) , uniquely determine the survival  statistics37. In Fig. 4a, we present the 
death age distributions for several disease parameter values. The disease has two lifespan-shortening effects: a 
short-term, acute effect that increases mortality during the disease, reducing lifespan by �tshort ; and a long-term, 
chronic effect that shifts the death age distribution to younger ages, further reducing lifespan by �tlong . In Fig. 4b, 
we numerically calculate the ratio of acute to chronic effects. As with the GNM, we see that long-term effects 
dominate for younger individuals whereas short-term effects dominate for older individuals, and are essentially 
independent of disease severity mτ.

We can also obtain simpler expressions for mortality effects—particularly in the ‘weak’ limit of small m and 
τ . These are useful to develop an understanding of the origins of the effects exhibited by diseases in the GNM.

Long-term effects
While short-term survival mediates long-term effects, this coupling is small in the weak limit. For simplicity, 
here we will condition on short-term survival—i.e. assume that individuals are alive at tend = ton + τ with excess 
damage �f .

Since mortality is determined by health, then the addition of exogenous damage �f  at tend effectively ages an 
individual by �tlong where f0(tend +�tlong ) = f0(tend)+�f  . This is independent of the form of the mortality 
law. We obtain

This expression neglects a monotonic memory term which is small for young ton , but that significantly 
decreases �tlong at old ton (Supplemental Eq. S75). Note that �tlong estimates the increase in biological age 
following  disease35. Using Eq. (2), and assuming small severities m we obtain �tlong ≈ �f /(αf0(tend)) . Further 
assuming small durations τ we obtain

Since mortality only depends on f, �tlong estimates the long-term reduction in lifespan after the survival 
of mild diseases—excluding any short-term mortality during the disease. Since f(t) increases with age, 

(4)µ(t) = beβt
(

1+
�f

fend

)β/α

,

(5)�tlong =
1

α
ln

(

1+
�f

f0(tend)

)

.

(6)�tlong ≈
mτ

f0(ton)

(

r +
1− r

ατ

)

.

Figure 4.  Phenomenological model. (a) Effect of varying m and r on death age. The control distribution (black, 
dot-dashed line) is shifted towards lower ages by the disease. With resilience (dashed lines), two phases emerge: 
an acute phase during the disease (ages 20–30) and a chronic phase after the disease ends, due to propagated 
damage. Each phase contributes to the overall loss of life due to the disease. Without resilience (solid line, r = 0 ) 
the two phases merge into a single short-lived persistent phase. ( τ = 10 , ton = 20 ). (b) Acute vs chronic effects. 
Ratio of expected life lost during acute phase vs chronic phase, �tshort/�tlong . The ratio increases approximately 
exponentially with increasing age of onset, ton , nearly independently of disease severity ( mτ ) ( τ = 10−3 , 
10−4 ≤ m ≤ 10−1 , r = 1).
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�tlong is largest in the youngest individuals—independent of disease parameters m, τ , and r. For imperfect 
resilience, with r < 1 , chronic effects typically dominate the long-term impact of disease-survivors and 
�tlong ≈ m(1− r)/

[

αf0(ton)
]

 ; these chronic effects are independent of τ . We observed that COVID-19 has r < 1 
whereas seasonal flu does not (see below).

Short-term effects
We can use the hazard µ(t) in Eq. (4) to solve for the survival probability S(t), using dS/dt = −µS (details are 
in the supplemental). Conditional on being alive S = 1 at ton we obtain

where fon is the frailty at ton . The probability of mortality by the end of an acute disease is 1− S(tend) therefore we 
obtain the excess short-term mortality �pdeath due to the acute disease by the difference in the survival function 
between using fon = f0(ton) and fon +m at ton . For small m and τ we obtain

We see that �pdeath ∝ e(β−α)ton is highest for older individuals since β > α . This is consistent with the 
observation of increasing short-term mortality with age in many diseases.

Comparing short- and long-term effects
To compare short- and long-term effects, we need to estimate the years of life lost due to death during the 
disease—all within the small m and τ limit. We can approximate the remaining lifespan �tD from the survival 
curve by imposing S(ton +�tD) = 1/e , this approximates the survival curve as a step function. Using Eq. (7) 
we obtain �tD = β−1 ln(1+ β/µ0(ton)) . The years of life lost during acute disease is then �tshort = �pdeath �tD 
which gives

In the limit of small m and τ , the ratio of short to long-term lifespan effects is then

where we have also allowed for maximal recovery after the disease ( r = 1 ). Interestingly, this ratio is independent 
of disease details. We note that ln(1+ x)/x ≈ 1 for x ≈ 0 and monotonically decreases towards 0 with increasing 
x = β/µ , i.e. with decreasing age. At large ages �tshort/�tlong ≈ β/α > 1 , so that short term mortality during 
disease affects lifespan more than long-term effects. Conversely, at sufficiently young ages, we expect long-term 
mortality effects after the disease to have greater impact on lifespan than short-term mortality during the disease. 
From our estimates of α and β , �tshort/�tlong = 1 for µ ≈ 0.024 . From all-causes mortality statistics from the 
U.S. population (Fig. 2a, grey squares) we have µ � 0.024 for ages ton � 70 , implying that �tshort < �tlong for 
onset ages < 70 . So, our phenomenological model indicates that most people would have a greater reduction 
of lifespan due to premature death long after the disease than from death during the disease. Similar results are 
observed away from the small m and τ limit (see Fig. 4) and in the GNM (see Fig. 3a).

Long-term excess relative risk (ERR) and the life-span study (LSS) of atom-bomb survivors
The life-span study (LSS) of approximately 120,000 survivors of the atomic bombs dropped on Nagasaki and 
Hiroshima has tracked excess lifetime mortality due to radiation exposure for more than 50 years, and found 
that excess relative risk decreased with age of exposure and was approximately linear with  dosage17,18. Deaths 
due to solid-tumor cancer predominate the excess mortality.

Our phenomenological model allows for any source of exogenous damage m, not just from disease. We recast 
it in terms of excess long-term hazard to be able to directly compare with the LSS analysis. Using Eq. (4) with 
τ = 0 we obtain

If we linearize in the hazard in �f  we obtain

where on the right we show a model of excess relative risk (ERR) from the  LSS17—here the covariates c such as sex, 
city, and birth year are indicated ( ERR ≡ γ (c)deθ ton ). Qualitatively both the LSS and our approach have excess 
absolute  risk17 declining with age of exposure ton and with linear dose-response ( �f  or d in Sv). We can identify 
θ = −α . Their model estimates α = 0.045 (90% CI [0.031, 0.060])17, which is consistent with our estimate of 

(7)S(t) = exp

[

−
b

β
(fon/a)

β/α
(

eβ(t−ton) − 1
)

]

,

(8)�pdeath ≈
mτβ

α

µ0

fon
=

mτβ

α

beβton

aeαton
.

(9)�tshort ≈
mτ

fon

µ0

α
ln

(

1+
β

µ0

)

.

(10)
�tshort

�tlong
≈

β

α
ln

(

1+
β

µ0

)

/(β/µ0),

(11)µ(t) = beβt
(

1+
�f

a
e−αton

)β/α

.

(12)µ(t) ≈ beβt
(

1+
β

α

�f

a
e−αton

)

= µ̃0(t, c)
(

1+ γ (c)deθ ton
)

,
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0.031. We suggest that the increased radiation sensitivity at younger exposure ages reported by the  LSS17 may be 
a general effect of increased damage sensitivity at younger exposure ages.

Our phenomenological model also suggests different risk models that could be used with LSS data, such as 
including nonlinear effects with Eq. (11). Using α = −θ and β = 0.089 (Fig. 2a), we estimate �f /a = 0.98d , 
where d is the exposure dose in Sieverts (Sv)17. This implies that the dose and the propagated damage �f  are 
approximately equal, when expressed in natural units. Since survivable doses range up to 5 Sv, the linearized 
approximation may be worse for younger individuals.

Parameterizations of COVID-19, influenza and Ebola
Using published IFRs we estimated disease severity, m, for COVID-1938,  influenza39 and  Ebola6, see Table 1. 
Studies of both COVID-1940 and  influenza39 recorded health in terms pre-disease vs post-recovery frailty, �f  . 
This allowed us to estimate the resilience parameter for those diseases, r. Each column of Table 1 includes 
parameter estimates taken from the literature for populations at particular ages, including τ , IFR, and �f  , 
together with our phenomenological model estimates for m and r using Supplemental Eqns. (S2) and (S3), 
respectively (where possible). Observe that resilience was not significantly different from 1 for influenza, but 
resilience was significantly lower for COVID-19. This may explain why COVID-19 is observed to have large 
long-term chronic  effects15,16: Eq. (6) predicts that r < 1 effects will dominate the chronic disease effects. See 
supplemental for details.

Disease severity, m, depends on individual robustness—and is used to set the scale for both IFR and �f  . 
Note that while m > 1 , we observe physiologically reasonable �f ≪ 1 . We observed that as individuals age, their 
robustness follows a U-shaped curve: increasing from infancy to adulthood and then decreasing with advanced 
age (Supplemental Fig. S5). In the case of COVID-19, this decreasing robustness with adult age paralleled 
the expected changes to frailty, f, suggesting a loss of robustness with increasing frailty. Consistent with this, 
comorbidities both increase the frailty  index22 and are major risk factors for mortality due to COVID-192.

The frailty index includes both physical and mental  deficits22. A large UK study found that individuals whom 
suffered from severe COVID-19 showed reduced cognitive impairment almost 2 years post-infection comparable 
to effectively aging ∼ 10  years41. Using Eq. (5) we can estimate a generic aging effect from our model. Our �f  
indicates an effective aging of �tlong = 6 years for a median-aged 57.5 year-old—comparable with the observed 
cognitive  aging41.

Discussion
We have developed and explored a three-parameter model of generic acute disease, which is built upon a generic 
network model (GNM) of organismal aging (age of onset ton , severity m, and duration τ ). We evaluated short-
term mortality outcomes using the excess infection fatality rate (IFR) and long-term mortality outcomes using 
the average reduction in lifespan due to the disease ( �ttot ). We found that while mortality during acute diseases 
is highest for older populations, the total reduction in lifespan is highest for younger populations. The majority 
of the years of life lost for younger populations are due to premature deaths later in life. Older populations have 
worse short-term outcomes because they have greater frailty f (worse health), which leads to a greater likelihood 
of death during the disease. Younger populations lose more years of life both because there is more to lose and 
more time for propagated damage �f  to impact mortality at the end of life.

Our results are qualitatively consistent with higher short-term mortality for older populations as reported for 
many acute diseases, including COVID-1910, SARS and  MERS2,  influenza4,5,  Ebola6, varicella (chickenpox)7,9, 
and meningococcal  disease8. While the 1918 (“Spanish”) flu pandemic had much higher than expected mortality 
for younger adults, this appears to be a special (non-generic)  case42 partially due to the effects of age-varying 
immunological  history5,43.

Long-term impacts due to post-acute sequelae (PAS) are  common12–15,44–49. We predict that such post-acute 
effects should increase with acute severity m, in qualitative agreement with, e.g., studies of long-COVID50. 
Similar severity dependence is seen in ICU (intensive care unit)  survivors51. Our disease model is essentially one 
of exogenous damage, and so should be more general than just acute disease. Long-term studies of hip-fracture 
survivors have shown significant excess relative risk that is approximately independent of attained  age52,53 in 
agreement with our simple phenomenological model (Eq. 11). Atomic bomb survivors provide a unique long-
term dataset for exogenous damage due to  radiation17—with exposure ages ranging from 0 to 60 and with more 
than 50 years of followup. In agreement with our findings, lifetime risks are greatest for younger exposure ages ton.

Table 1.  Disease parameter estimates for specific ages (95% CI). Noteworthy values are in [bold].

COVID-19 Influenza (hospitalized) Ebola

Age 65 80.1 (SD 8.7) 16–44

τ  (days) 12 16.8 15.8

IFR 0.017 (0.012–0.027) 0.12 (0.11–0.14) 0.65 (0.64–0.67)

m 1.1 (0.9–1.4) 2.1 (2.0–2.2) 5.74 (5.66–5.82)

�f 0.063 (0.046–0.081) 0.0065 (0.0041–0.0089) –

r 0.94 (0.93–0.96) 0.998 (0.997–1.000) –
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Aging individuals exhibit changing robustness (resistance to damage) and resilience (recovery from 
damage)—typically both declining with  age54–56. Disease frequency typically increases with  age57, consistent with 
declining robustness. Robustness and resilience can be considered individual and disease-specific parameters 
since, e.g., vaccinations or prior exposure increase robustness to infectious disease while, e.g., medical care can 
improve recovery. Robustness could affect the frequency and/or severity of disease for older individuals (e.g. ton 
and m). Resilience could affect recovery and duration (r and τ ). Our results are for a fixed severity (m) so direct 
comparisons between ages require caution. Nevertheless, the ratio �tshort/�tlong is conditioned on the disease 
occurring, and is largely independent of disease severity (Fig. 4b). The observation that the lifespan impact of 
disease can be much worse than the acute impact of disease for younger individuals is therefore independent 
of robustness.

Our model explicitly includes resilience through r. Smaller resilience (r) should lead to larger �f  and thus 
worse long-term effects. Since resilience is expected to decrease with  age55,56, we would expect more long-term 
effects in older individuals. The result would be a smaller ratio of �tshort/�tlong for older individuals.

Our disease model has no explicit age dependent dynamics, so all effects occur via individual health. We 
expect that short-term mortality will be worse with either worse health or older ages. Consistent with this, the 
prognosis of disease generally worsens with a higher frailty index f24,58. Multiple concurrent diseases are expected 
to combine additively through f, although saturation or exclusion effects may occur for severe or overlapping 
multimorbidities, respectively. While our phenomenological model has no age effect for �f  at a given m, our 
GNM exhibits increasing �f  with age. Furthermore, we expect that declining robustness with age (or declining 
health) will lead to larger m and so larger long-term health impacts ( �f  ). Such effects are observed. For example, 
disability following hospitalization increases more with  age59, and more following ICU admission with  frailty60. 
Frailty hinders recovery from  influenza39. Age is a risk-factor associated with post-COVID-19  conditions15,50, 
and with PAS of chikungunya virus  disease47.

Consistent with this picture, we observed that our estimates for disease severity, m, increased with age. For 
COVID-19, m increased exponentially with age: commensurate with f and consistent with a loss of robustness 
with increasing frailty. Although we did not have data to estimate age-related changes to resilience, we did observe 
that the seasonal flu showed nearly perfect resilience whereas COVID-19 indicated incomplete recovery ( r < 1 ). 
This could help explain the prevalence of COVID-19  PAS15,16. Parameterizing additional specific diseases will 
facilitate future studies to investigate disease-specific effects on lifetime mortality.

Most studies of post-acute mortality effects only have a w � 5 year observation window. We found that 
w � 20 year is needed to observe the largest mortality impacts, which we predict occur for smaller onset ages. 
Larger observation windows w are needed. For shorter w � 20 windows, general health measures such as the 
frailty index f24 can be used to assess excess damage �f  due to the disease. The effective cognitive aging of 
approximately 10 years due to long COVID-1941 is consistent with our generic estimates using Eq. (5). The 
relative ease with which mental deficits can be measured may make them a convenient way to measure follow 
up health post-infection.

Our GNM disease model is stochastic and exhibits considerable individual variability in e.g., excess post-acute 
damage �f  (see Fig. 1b). For real diseases, we expect additional variability in the acute severity (m). Our models 
are restricted to adults (with t � 20 ), due to similar restrictions on the GNM, frailty f, and Gompertz’s law. We 
expect adult males to experience worse short-term mortality risk, including both acute and chronic effects, due 
to their higher baseline risk (Supplemental Fig. S6b). This sex-effect is seen in parasite-associated  mortality61 
and most infectious  diseases61,62.

Our simple phenomenological theory shares with the full disease model our assumptions that residual damage 
and mortality are determined by health via f. Subject to these assumptions, the qualitative agreement of our 
models indicates the potential universality of our results. From the phenomenological theory we see the key 
role of the exponential growth rates of mortality and frailty, β and α respectively. Empirically we have β > α , so 
short-term excess IFR ( �pdeath ) grows with age. Our phenomenological theory also indicates that post-survivor 
years of life lost �tlong is universally greatest for younger adults—a consequence of α > 0.

We infer universal aspects of disease through the effects of direct (m) and secondary damage ( �f  ) in an aging 
population. We find large long-term effects at young onset ages. Including such age-effects in epidemic models, 
such as for COVID-1916,19, would help us better understand and mitigate the impacts of disease on societies. 
Researchers typically ask if it is better to vaccinate the old to reduce direct risk, or vaccinate the young to reduce 
overall infection  prevalence19. Similarly, cost effectiveness of e.g. rotavirus  vaccine63 or allocation of COVID-19 
 vaccine20 often only consider mortality during disease. Often neglected are the potential chronic effects due to 
propagated damage, which we find are worse for the young. Our results could have significant implications for 
how we prioritize medical interventions across age. Long-term observational studies of health and mortality 
after acute disease or exposure are needed to better capture lifetime disease impacts.

Data availability
The disease model code used to generate the data presented in this paper are available at https:// github. com/ 
Rebec caTob in/ Disea seMod el. The data used for plots is available on request from A.R.
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