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Randomly rotating particles that have been isotropically labeled with rigidly linked fluorophores
will undergo non-isotropic (patchy) photobleaching under illumination due to the dipole coupling
of fluorophores with light. For a rotational diffusion rate D of the particle and a photobleaching
time scale ⌧ of the fluorophores, the dynamics of this process are characterized by the dimensionless
combination D⌧. We find significant interparticle fluctuations at intermediate D⌧. These fluctuations
vanish at both large and small D⌧ or at small or large elapsed times t. Associated with these fluctua-
tions between particles, we also observe transient non-monotonicities of the brightness of individual
particles. These non-monotonicities can be as much as 20% of the original brightness. We show
that these novel photobleach-fluctuations dominate over variability of single-fluorophore orienta-
tion when there are at least 103 fluorophores on individual particles. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4989673]

I. INTRODUCTION

Photobleaching, or the occasional but irreversible loss of
fluorescence in individual fluorophores due to illumination, is
often an annoyance in biological imaging. Nevertheless, it is
used in fluorescence recovery after photobleaching (FRAP)
techniques to determine local translational diffusivity.1 Cel-
lular copy-number of fluorophores can also be determined
by exploiting the fluctuations inherent in the photobleach-
ing process.2,3 Understanding fundamental physical processes
that contribute to observable phenomenology during photo-
bleaching is important for the appropriate application and
interpretation of quantitative techniques.

Fluorophores have a dipolar coupling with the electric
field, which means that the fluorophore brightness depends
on its orientation with respect to the illumination polariza-
tion.4 This anisotropy can be exploited to determine the ori-
entation or rotational diffusivity of individual fluorophores.5

With polarized illumination and imaging, polarized fluores-
cence recovery after photobleaching (PFRAP) can determine
slow rotational diffusivity of fluorophores.6,7 PFRAP relies
on rapid photobleaching of an aligned fraction of fluorophores
and the subsequent slow rotation of unbleached fluorophores
to provide signal recovery.

When fluorophores do not rotate, the anisotropic dipolar
coupling with the constant illumination beam leads to a non-
exponential photobleaching decay of the fluorescent signal
with time.8 This is analogous to the non-exponential photo-
bleaching expected in non-uniformly illuminated samples9 but
is due to the non-uniform orientation (random but static) of
collections of fluorophores.

The simultaneous effect of particle rotation and bound
fluorophore bleaching has not been previously considered.
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PFRAP considers the signal recovery due to rotation without
further bleaching after rapid photobleaching,6,7 while non-
exponential photobleaching was characterized only for non-
rotating particles.8 Understanding the effects of simultaneous
particle rotation and fluorophore photobleaching is particu-
larly relevant when multiple fluorophores are bound to an
individual particle.

Fluorescently labeled polymeric microbeads of various
sizes are readily available10 and can be used to probe the local
environment at various length-scales comparable to the par-
ticle size. This is particularly interesting within the cellular
context, where rotational and translational diffusion can be
locally (and distinctly) affected by local membranes11 and
crowding.12 Typically, a large number of fluorophores are
attached to individual particles (e.g., 6 µm calibration beads
have from 104 to 106 fluorophores attached13).

In this paper, we model ensembles of fluorescently labeled
spherical particles that are randomly rotating under uniform
linearly polarized illumination. In Sec. II, we mathemati-
cally solve the temporal evolution of the average angular-
distribution of fluorophore orientations and its impact on
the apparent particle brightness. We assume that many fluo-
rophores are rigidly and isotropically bound to and co-rotating
with the particles. We find non-exponential photobleaching
that extends earlier results for non-rotating particles.8 Some of
the calculation details are provided in the Appendix, together
with their application to PFRAP.6,7 In Sec. III, we numerically
model the stochastic temporal evolution of individual labeled
particles for various numbers of fluorophores. We obtain con-
sistent results with the average behavior but also character-
ize the interparticle and temporal fluctuations in fluorescence
intensity due to random particle rotation.

II. AVERAGE BLEACHING WITH ROTATION

For an ensemble of labeled particles, we first con-
sider the time-dependent distribution function f (✓, �, t) of the
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orientation of unbleached fluorophores—where ✓ 2 [0, ⇡] is
the polar angle with respect to the polarization axis ẑ and
� 2 [0, 2⇡] is the azimuthal angle. This represents the aver-
age behavior of the ensemble, as it evolves in time due to
rotational diffusion of the particles together with photobleach-
ing. We consider an initially isotropic (f = const) distribution.
Photobleaching proceeds through an anisotropic dipole cou-
pling with the linearly polarized excitation light with the elec-
tric field ~E pointing along the ẑ axis, while diffusion has an
isotropizing effect.

The dynamical equation for f is

@f (✓, �, t)
@t

= Dr2f (✓, �, t) � cos2 ✓

⌧
f (✓, �, t), (1)

where r2 represents a spherical Laplacian, i.e., the angular
part of the Laplacian that governs rotational diffusion. D is the
rotational diffusion constant that depends on the particle size
and the local fluid environment, while ⌧ is the time-constant
controlling photobleaching that depends on the fluorophore
properties and the illumination intensity. (Our time scales,
1/D for particle rotation and ⌧ for fluorophore photobleaching,
are both much longer than the de-excitation fluorescence life-
time of single-fluorophore excitation.) The dipolar coupling
of the electric field with the fluorophore dipole ~µ determines
the angular factor in the last term since |~µ · ~E |2 / cos2 ✓. The
dimensionless combination D⌧ describes the relative speed of
rotational reorientation with respect to photobleaching.

Because of the dipolar coupling, the azimuthal structure
in f (✓, �) does not affect either the average brightness or the
bleach rate. Accordingly, we consider only the azimuthal aver-
age ⇥(✓, t) ⌘ s 2⇡

0 d�f (✓, �, t)/2⇡. We can then expand ⇥ with
respect to a complete set of Legendre polynomials,

⇥(✓, t) =
1X

n=0

an(t)Pn(cos ✓), (2)

with coefficients an(t) = 2n+1
2 s

1
�1 ⇥(x, t)Pn(x)dx.

Averaging Eq. (1) over � and substituting Eq. (2), we
obtain coupled dynamics for an(t),

dan

dt
= �Dnan �

Anan�2 + Bnan + Cnan+2

⌧
, (3)

where

An =
n(n � 1)

(2n � 3)(2n � 1)
,

Bn =
(2n2 + 2n � 1)

(2n � 1)(2n + 3)
,

Cn =
(n + 2)(n + 1)

(2n + 3)(2n + 5)
,

(4)

and
Dn = Dn(n + 1).

(More details of the calculation are provided in Subsection 1
of the Appendix.) We observe that the diffusive factor Dn is
always positive, so that rotational diffusion always decreases
an with time for n > 0. The rotational factors (An, Bn, and Cn)
mix the Legendre amplitudes {an}, which can then transiently
increase. The corresponding equations for circularly polarized
illumination are provided in Subsection 2 of the Appendix.

FIG. 1. Relative average intensities Î of unbleached fluorophores on an
ensemble of diffusing particles vs scaled time t/⌧ for D⌧ = 0, 0.1, 1, 10 as
indicated. The average behavior of the stochastic simulation with 1000 par-
ticles is shown with points, while the numerical solution of Eq. (5) is shown
with the corresponding lines. Exponential decay is observed for larger D⌧
and corresponds to straight lines on this semi-log scale. Inset: example of
unbleached fluorophores radially oriented around a single spherical particle
with D⌧ = 0.25 with t = 0 or 8⌧ as indicated. Initially there are N = 15 000
fluorophores.

Initially, at t = 0, we take fluorophores to be isotropically
oriented around the particles so that an(0)
= 2n+1

2 s
1
�1 ⇥(x, 0)Pn(x)dx = 2n+1

2 s
1
�1

P0(x)
2 Pn(x)dx = 1

2 �n,0.
We solve Eq. (3) for {an(t)} numerically using a semi-forward
Euler method.

Under ongoing linearly polarized illumination, the
remaining fluorophores will fluoresce. The time-dependent
average intensity per fluorophore, over the ensemble of parti-
cles, is given by

I(t) =
⌅ 1

�1
x2 ⇥(x, t)dx =

4
15

a2(t) +
2
3

a0(t). (5)

We note that I(0) = 1/3, where unity corresponds to all fluo-
rophores aligned with ✓ = 0. For this paper, we will show the
relative intensity to t = 0, i.e.,

Î ⌘ I(t)/I(0). (6)

The lines in Fig. 1 show the average relative intensity Î vs the
scaled time t/⌧. Exponential bleaching is recovered for larger
D⌧ values, where the rapid rotational diffusion isotropizes the
system. Non-exponential photobleaching is seen for smaller
D⌧, consistent with earlier reports at D⌧ = 0.8

III. STOCHASTIC ROTATION AND BLEACHING

Underlying the average behavior of an ensemble of parti-
cles (described in Sec. II) is the stochastic behavior of individ-
ual particles that randomly rotate and individual fluorophores
on those particles that randomly photobleach. Here, we con-
sider this behavior through the stochastic simulation of indi-
vidual particles and fluorophores. This allows us to consider
both the variability between particles at a given time and also
the variation of the brightness of an individual particle with
time. By including individual fluorophores, we can also assess
when fluctuations due to random rotation and bleaching would
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be masked due to random initial placement of a small number
of initial fluorophores N.

We investigate the behavior of isotropically labeled par-
ticles that are randomly rotating (with orientational diffusion
constant D) and that each has N attached fluorophores that
rigidly co-rotate with the particle and randomly photo-bleach
with rate �i = cos2 ✓i/⌧ for the ith fluorophore that has a
polar angle ✓i. Using a time step of �t = 0.001, we have
implemented small random rotations in each �t, consistent
with D, to all of the fluorophores attached to a given parti-
cle. We have allowed individual fluorophores to bleach with
probability pi = �i�t ⌧ 1.

The result is illustrated in the inset of Fig. 1 for D⌧ = 0.25
at two times as indicated. We have used a spherical particle
with radially oriented fluorophores for illustrative purposes,
but equivalently we have shown the fluorophore orientations
independently of the particle shape. The initial distribution is
isotropic, or uniform on the sphere, at t = 0. Some amount
of fluctuation is apparent at t = 8⌧, arising from ongoing
bleaching in combination with the random rotation of the
particle.

The intensity is given by I(t) =
P

cos2 ✓i/N , where the
sum is over the unbleached fluorophores. The initial average
intensity is I(0) = 1/3, as before. We plot the average relative
intensity Î vs t/⌧ as points in Fig. 1. The average of the sin-
gle particle stochastic simulations agrees well with the lines
showing the calculations of the ensemble average from Sec. II,
as expected.

The variability between individual particles is captured

by the standard deviation �Î =

q
hÎ2i � hÎi2 of the relative

bleach intensity. In Fig. 2, we show �Î vs t/⌧ for D⌧
= 0, 2�6, 2�4, 2�2, 1, 22, 24, and 26 as indicated. With a large
number of fluorophores, as N ! 1, we do not expect any fluc-
tuations in the limits of early times t/⌧ ! 0 or for non-rotating
particles when D⌧ = 0. The small non-zero fluctuations in

FIG. 2. Standard deviation between particles of relative intensities �Î vs
scaled time t/⌧, for various values of D⌧ as indicated by the legend. At t = 0,
N = 10 000 fluorophores were randomly oriented on each particle, which then
was allowed to randomly rotate with diffusivity D. The fluorophores rigidly
rotate with each particle. Stochastic photobleaching of each fluorophore occurs
at rate �i = cos2 ✓i/⌧, where ✓i is the polar angle of that fluorophore with
respect to the illumination polarization. 1000 particles were simulated. At
t/⌧ ⇡ 1, there is a peak in the interparticle fluctuations, which is largest for
intermediate values of D⌧ ⇡ 0.25.

FIG. 3. For one particle, a portion of the trace of the relative intensity Î vs.
scaled time t/⌧ is shown. Here, D⌧ = 1/64 and N = 1000. Significant transient
increases (non-monotonicities) in Î are clearly observable and can be char-
acterized by their magnitude �Î , duration �t, and start time ts, as indicated.
These non-monotonicities are observed for all D⌧ > 0.

these limits result from the finite N = 10 000 number of initial
fluorophores. These contributions are small compared to the
fluctuations seen at the peak at approximately t/⌧ ⇡ 1. The
peak is highest for intermediate values of D⌧ ⇡ 0.25. These
peak fluctuations arise from the different random rotations of
individual particles.

To better understand the origin of the fluctuations between
particles, we considered the relative intensity Î vs. t/⌧ for
individual particles. Part of a single-particle trace is shown
in Fig. 3. It is apparent that the signal is both stochastic and
non-monotonic. These increases of Î for single particles are
due to the rotation of unbleached orientations into alignment
with the illumination field, which is the single-particle and
continuous-illumination analogue of the PFRAP process (see
Subsection 3 of the Appendix for the average behavior of
PFRAP). We characterize non-monotonic segments, as illus-
trated by the red triangle in Fig. 3, by a start time ts, an increase
of relative intensity �Î , and a duration �t.

FIG. 4. The maximal non-monotonicity for each particle �Îmax was aver-
aged and is shown plotted vs the dimensionless D⌧ for various numbers
of initial fluorophores N, as indicated in the legend. For N & 1000, the
non-monotonicities are approximately independent of N, and maximal at
approximately D⌧ = 0.25. The magnitudes of maximal non-monotonicities
are of the same order as the average interparticle fluctuations in Fig. 2.
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FIG. 5. The average scaled start time of the maximal
non-monotonicity htsi/⌧ vs D⌧ is shown in (a), while
the average scaled duration h�tmaxi/⌧ vs D⌧ is shown in
(b), for various values of N as indicated by the legend in
(a). Also shown is the timing of the maximal interparti-
cle fluctuation from Fig. 2. We observe that the largest
non-monotonicities occur earlier and do not last as long
at larger D⌧.

We found the non-monotonicity of individual particle
intensities surprising and have characterized its dependence on
D⌧. We have recorded the maximum absolute increase �Imax,
the corresponding start ts, and the duration�tmax, for 1000 par-
ticle traces. In Fig. 4, we plot the average h�Imaxi vs D⌧ (note
the log-scale). Statistical error bars of the means are smaller
than the point sizes. As indicated by the legend, we show the
results for various numbers of fluorophores per particle N.
For N = 10, the average intensity increase is larger than I(0)
for larger D⌧—reflecting the spontaneous anisotropy of initial
fluorophore orientations with smaller N. For larger N, the inten-
sity increases are smaller, and for N & 1000, a maximum of
h�Îmaxi ⇡ 0.2 is apparent at intermediate values of D⌧ ⇡ 0.25.
This maximum is not caused by random fluorophore placement
but by the random rotation (and anisotropic photobleaching)
of individual particles, as indicated by the lack of significant
N dependence for N & 1000.

The timing and duration of the non-monotonicities are
explored in Fig. 5 and its inset, respectively. We see that at
larger D⌧ values the largest non-monotonicities occur earlier
and do not last as long. We have also plotted the approxi-
mate peak timing of �Î with blue-diamonds for N = 20 000.
We observe that the timing of maximal intensity fluctua-
tions between particles is quite close to the timing of maxi-
mal non-monotonicities. This implies that non-monotonicities
are a significant contribution to the fluctuations between
particles.

IV. DISCUSSION

In this work, we have considered isotropically labeled flu-
orescent particles that rotate with diffusivity D while attached
fluorophores are photobleached with time scale ⌧. The bleach
dynamics are controlled by the dimensionless combination D⌧.

We have found that the average bleach dynamics are
non-exponential for 0  D⌧ < 1. We have further char-
acterized the fluctuations between particles and found that
they are maximal at intermediate values of D⌧ ⇡ 0.25. By
considering individual particles, we found significant random

non-monotonicities of their brightness—approximately corre-
sponding to the maximal fluctuations observed.

These non-monotonicities and fluctuations are due to the
random rotation of unbleached fluorophores into alignment
with the polarization of the excitation illumination. This effect
is analogous to polarization recovery after photobleaching
(PFRAP),6,7 though that involves rapid photobleaching fol-
lowed by diffusional recovery while this involves simultaneous
and continuous photobleaching and diffusion.

A finite number N of fluorophores will lead to tempo-
ral photobleach fluctuations as an O(

p
N) effect,2 and another

O(
p

N) effect is expected due to stochasticities in an initial
uniform random fluorophore orientation. The effect described
in this paper is an O(N) effect that is not due to the finite num-
ber of fluorophores. Rather it is due to the random rotation
of individual particles and the rotation of its attached fluo-
rophores along with it. We have found that the O(N) rotational
effect dominates over the O(

p
N) effects for N & 1000.

We have found that the interparticle fluctuations are
largest when t ⇡ ⌧ and when D⌧ ⇡ 0.25. The later can
be easily adjusted since ⌧ is inversely proportional to the
illumination intensity. We only considered linearly polarized
illumination, since we expect greater fluctuations than for
the more isotropic circularly polarized (or unpolarized) light.
Analogously, PFRAP is only observable for linearly polarized
light—not circularly (see Subsection 3 of the Appendix).

More broadly, we have identified a new mechanism that
contributes to the phenomena of non-exponential photobleach-
ing and of fluorescence fluctuations. There are other sources
of non-exponential photobleaching of collections of particles,
including depth-extinction14 and non-uniform illumination.9

Non-exponential bleaching can also be observed for individual
fluorophores with multiple internal states.15 Our mechanism
of coupled particle rotation and photobleaching generalizes
earlier D = 0 results.8 The tunability of our effect with D
distinguishes it from other mechanisms of non-exponential
photobleaching.9,14,15

There are also many other sources of fluctuations for
fluorophore-associated particles, including blinking and the
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random orientation and bleaching of a finite number N of flu-
orophores. These are typically O(

p
N) effects. Our study adds

an O(N) effect due to simultaneous rotation and photobleach-
ing, and this allows it to be distinguished from, e.g., blinking
or other single-fluorophore effects. Nevertheless, the maximal
scale of fluctuations that we have identified is on the order of
5%-20% (see Figs. 2 and 4). Accordingly, we do not antici-
pate that significant corrections will be needed in correlation
spectroscopy techniques,16 which also are more focused on
oligomers with N . 10.

Our model particles are isotropically labeled with many
rigidly bound fluorophores. How realistic are these ideals with
respect to the non-exponential photobleaching and fluctuation
phenomena we have characterized?

Non-spherical nanoparticles, or particles with oriented
crystalline or chemically patchy surfaces, would have sig-
nificant anisotropy in the initial fluorophore orientation. For
the average photobleach dynamics (Sec. II), this would intro-
duce non-zero {an} for n > 0 and so modify Î(t) but not
the qualitative observation of non-exponential photobleach-
ing that depends on D⌧. For the fluctuations between particles
and in the time evolution of the brightness of single parti-
cles (Sec. III), initial anisotropies would likely dominate the
fluctuations, much as initial anisotropies introduced by small
(N . 100) numbers of bound fluorophores do (Fig. 4).

Spherical polymeric microbeads are good candidate par-
ticles for having isotropically bound fluorophores. We can
estimate the minimum particle size by requiring a typical
10 nm fluorophore separation and N & 1000 fluorophores per
particle. For surface labeled microbeads, we would require
a diameter d & 1 µm. For volume labeled microbeads, a
diameter of d & 200 nm should suffice. For volume-labeled
beads, fluorophore orientation should be independent of bead
shape—so perfectly spherical beads may not be required for
isotropy.

Flexible linkers between fluorophores and particles would
decrease both anisotropic fluctuations and non-exponential
photobleaching. This has been characterized for PFRAP.6

Nevertheless, various approaches can minimize such
wobble. Multiple single bonds or double bonds between the
fluorophore and particle will minimize their relative rotational
freedom (see Refs. 17 and 18). Fluorophores within a glassy

matrix, such as within a polymeric microbead, also exhibit a
limited wobble.19

With volumetric fluorescent labeling within polymeric
microbeads, the ideal conditions of our model should be acces-
sible. Such microbeads of various sizes can separately probe
local rotational and translational diffusion at length-scales
comparable to the particle size. More generally, we have iden-
tified a novel mechanism, of random particle rotation and flu-
orophore bleaching, both for non-exponential photobleaching
and for interparticle and temporal fluctuations in brightness.
This mechanism will contribute to these phenomena even in
non-ideal conditions. We expect qualitatively similar results
(though a smaller effect) for circularly polarized illumination.
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APPENDIX: AVERAGE BLEACH CALCULATION
DETAILS
1. Linear polarization

For linear polarization, we start with Eq. (1). Applying
this to ⇥(✓, t) and averaging over �, we obtain

@⇥(✓, t)
@t

= D
1

sin ✓
@

@✓

 
sin ✓
@⇥(✓, t)
@✓

!
� cos2 ✓

⌧
⇥(✓, t).

(A1)

Expanding ⇥ in Legendre polynomials Pn and using
@
@x

⇣
(1 � x2) @Pl(x)

@x

⌘
= �l(l + 1)Pl(x), we obtain

@an(t)
@t

= �Dn(n + 1)an(t)

� (2n + 1)
2

1
⌧

1X

l=0

al(t)
⌅ 1

�1
x2Pn(x)Pl(x)dx. (A2)

Using the identity

⌅ 1

�1
x2Pn(x)Pl(x)dx =

8>>>>>>>>>>>><>>>>>>>>>>>>:

2(l + 1)(l + 2)
(2l + 1)(2l + 3)(2l + 5)

for n = l + 2

2(2l2 + 2l � 1)
(2l � 1)(2l + 1)(2l + 3)

for n = l

2l(l � 1)
(2l � 3)(2l � 1)(2l + 1)

for n = l � 2

then leads to Eq. (3).

2. Circular polarization

Here, we show that the calculation for the average inten-
sity is modified for circularly polarized light. Because of the

less anisotropic illumination, we expect smaller fluctuations
for the circular polarization case. The dynamics are

@⇥(✓, t)
@t

= D
1

sin ✓
@

@✓

 
sin ✓
@⇥ (✓, t)
@✓

!
� sin2 ✓

2⌧
⇥(✓, t),

(A3)
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and we obtain
@an(t)
@t

= �Dn(n + 1)an(t) � 1
2⌧

an(t)

+
1

2⌧
[Anan�2(t) + Bnan(t) + Cnan+2(t)] , (A4)

also using Eq. (4). I(t) is then given by Eq. (5).

3. Polarized fluorescence recovery after
photobleaching

PFRAP involves rapid photobleaching followed by rota-
tional recovery.6,7 In our approach, rapid photobleaching cor-
responds to D = 0. Subsequent rotational recovery corresponds
to ⌧ ⇡ 1.

a. PFRAP linear polarization

For linear polarization, we can solve Eq. (A1) (with D
= 0) directly by changing variables to x ⌘ cos(✓). Then
⇥̇(x, t) = �x2/⌧⇥(x, t) and the solution after rapid bleaching
for an interval �t is ⇥(x,�t) = ⇥(x, 0) exp(�x2�t/⌧), where
⇥(x, 0) = 1/2.

From Eq. (5), only the a0 and a2 components are relevant
to the subsequent rotational recovery (starting at t = 0, after
the rapid bleach). From the Legendre function orthonormality,
we have an(0) = 2n+1

2 s
1
�1 ⇥(x, 0)Pn(x)dx. This gives

a0(0) =
p
⇡Erf
p
↵

4
p
↵

,

a2(0) =
5

16↵3/2

f
�6
p
↵ exp(�↵) + (3 � 2↵)

p
⇡Erf
p
↵
g

,

(A5)

where ↵ ⌘ �t/⌧ and Erf(x) is the error function.
From Eq. (A1) with ⌧ =1 (no significant bleaching

during rotational recovery), a0 is time independent, while
a2(t)= a2(0) exp(�6Dt). Interestingly a2(0)  0, so the rota-
tional recovery is entirely due to the decay of a2(t). We find the
numerical maximum a2,max(0)'� 0.353 (with a0,max ' 0.221)
at ↵ ' 3.97. From Eq. (5), this gives a relative rotational
recovery of 64% with PFRAP independent of D⌧, which
is significantly larger than the ⇡20% non-monotonicity

exhibited in Fig. 4 at D⌧ ⇡ 0.25 with continuous bleaching
and rotation.

b. PFRAP circular polarization

Here ⇥̇(x, t)=�(1� x2)/(2⌧)⇥(x, t), and the solution after
rapid bleaching for an interval �t is ⇥(x,�t) = 1/2 exp(�(1
� x2)�t/(2⌧)). We then obtain

a0(0) = F(
p
↵/2)/

p
2↵,

a2(0) =
5

4↵3/2

f
3
p
↵ �
p

2(3 + ↵)F(
p
↵/2)

g
,

(A6)

where ↵ ⌘�t/⌧ and the Dawson function F(x)
⌘ e�x2p

⇡Erfi(x)/2, where Erfi is the imaginary error function.
Interestingly, a2(0) > 0 for all ↵ > 0. This indicates that

there is no rotational recovery after rapid photobleaching with
circularly polarized light.
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