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Abstract Frailty indices (FIs) based on continuous

valued health data, such as obtained from blood and

urine tests, have been shown to be predictive of

adverse health outcomes. However, creating FIs from

such biomarker data requires a binarization treatment

that is difficult to standardize across studies. In this

work, we explore a ‘‘quantile’’ methodology for the

generic treatment of biomarker data that allows us to

construct an FI without preexisting medical knowl-

edge (i.e. risk thresholds) of the included biomarkers.

We show that our quantile approach performs as well

as, or even slightly better than, establishedmethods for

the National Health and Nutrition Examination Survey

and the Canadian Study of Health and Aging data sets.

Furthermore, we show that our approach is robust to

cohort effects within studies as compared to other

data-based methods. The success of our binarization

approaches provides insight into the robustness of the

FI as a health measure, and the upper limits of the FI

observed in various data sets, and also highlights

general difficulties in obtaining absolute scales for

comparing FIs between studies.

Keywords Frailty index � Biomarkers �
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Introduction

Poor health is often associated with aging, a decrease

in functional capacity, and an increased susceptibility

to illness and injury. While chronological age is a

convenient proxy for aging, it cannot capture individ-

ual variability of health at a given age. The frailty

index (FI) is a well-tested way of incorporating large

and varied aspects of health and function that can be

easily used to differentiate between individuals of the

same age. Defined as the fraction of selected health

attributes that are in an unhealthy state (called

deficits), the FI has been shown to be a robust measure

of individual health over the aging process (Mitnitski

et al. 2001; Searle et al. 2008). The FI is observed to

increase with age and the distribution of FIs on a

population level broadens with increasing age,

describing the heterogeneity of aging (Gu et al.

2009). The FI is predictive of mortality and of other

adverse health outcomes (Rockwood et al. 2005;

Evans et al. 2014).
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The health attributes considered in the FI are

typically clinically observable or self-reported, such as

disabilities in activities of daily living or physical or

cognitive impairments (Searle et al. 2008). Alterna-

tively, standard laboratory measurements such as

blood and urine biomarkers (Blodgett et al. 2017;

Mitnitski et al. 2015; Howlett et al. 2014) as well as

biomarkers of cellular senescence and oxidative stress

(Mitnitski et al. 2015) can be used to create a

laboratory-test based FI known as FI-Lab. Cutpoints

are used to binarize the quantitative biomarker mea-

surements into deficits so that they can be naturally

included in an FI. Normal reference ranges based on

diagnostic or therapeutic utility (McPherson 2017) are

commonly used as cutpoints.

Since the FI is an aggregate measure and is not used

for the diagnosis or treatment of specific conditions,

standard cutpoints are not necessarily best suited to its

role of predicting risks. Furthermore, standard cut-

points are often not available for emerging biomarker

measurements such as in epigenetic, proteomic,

metabolomic, or other high-throughput ‘‘omics’’

approaches. Alternative ‘‘data-based’’ methods obtain

cutpoints from the available data under consideration.

Both normal reference ranges (Blodgett et al. 2017;

Howlett et al. 2014) and data-based methods (Mitnit-

ski et al. 2015) can and have been used to create an

effective FI-Lab.

One data-based method of biomarker binarization

is to select cutpoints to maximize some predictive

aspect of the post-binarized biomarker. For example,

cutpoints can be selected to maximize the difference

between survival curves of people that are on either

side of the cutpoint for each biomarker (Mitnitski

et al. 2015). Equivalently, other predictive measures

such as receiver operator characteristics (ROC) per-

formance or mutual information (Farrell et al. 2016)

could be used with respect to a particular outcome

such as mortality within 5-years to generate ‘‘optimal’’

cutpoints. While attractive in principle, such individ-

ual biomarker optimization approaches run the risk of

creating FIs that are overly specific to the study cohort

and not generally applicable for other cohorts.

Another popular data-based method for binarizing

continuous-valued data is to select cutpoints based on

the quantile of the population. This approach is used in

both the Fried frailty phenotype (Fried et al. 2001)

(with quintiles) and in the exploration of the allostatic

load theory of physiological disregulation (Seplaki

et al. 2005; Juster et al. 2010) (with quartiles). Here, a

risk direction is chosen for each biomarker, e.g. by

how the biomarker changes with age, and the cutpoint

is selected for each biomarker by the quantile of that

biomarker—i.e. the fraction of the population that has

values of the biomarker above the cutpoint. This

approach should be less susceptible to overfitting,

since the quantile is chosen globally for all biomarkers

rather than individually for each biomarker. Never-

theless, it raises the question of how to choose the best

quantile and of how sensitively the results depend

upon the quantile chosen. Investigation of allostatic

load (Seplaki et al. 2005) found that deciles and

quartiles behaved similarly, implying that the quantile

approach may be robust with respect to choice of

quantile. Nevertheless, no systematic investigation of

the quantile approach in the context of the FI has been

done before.

A systematic investigation of data-based

approaches for the binarization of continuous-valued

biomarkers used in the evaluation of the FI can explore

the questions of overfitting due to optimization raised

above. At the same time, we can examine the

robustness (or insensitivity) of the FI as a predictive

measure of health outcomes or mortality and the

robustness of the FI maximum seen in observational

studies of aging (Searle et al. 2008; Mitnitski et al.

2015), with respect to the details of any binarization

approach. Robust and validated data-based

approaches to binarization will facilitate the future

development of FIs for high-throughput ’omics data

and for more model organisms of aging.

Here, we examine the effectiveness of data-based

binarization schemes for building the FI from

biomarker data. We use both the NHANES and CSHA

data sets to check whether cohort effects are large; we

find that they are not. We examine overfitting effects

with cross-validation, and find that they are present

when optimal cutpoints are chosen for each biomar-

ker—but that they are small when global cutpoints are

chosen for all biomarkers. We compare the predictive

performance of data-based schemes against earlier

published results, and find that the data-based schemes

have comparable or slightly higher predictive value

than established FIs with respect to predicting mor-

tality and clinical deficits. Overall, we find that a

generic quantile data-based binarization approach

performs well.
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A key characteristic of the FI is the relatively

insensitivity (Searle et al. 2008; Mitnitski et al. 2015)

to the particular choice of deficits. We show that this

also holds for choosing cutpoints for FI-Lab, and we

find that a broad range of cutpoints exist where the

quantile binarized FI-Lab is effective. This demon-

strates both the universality of the FI and the generality

of our method of choosing cutpoints. Nevertheless, we

identify the best range of quantiles to use and we find

that they overlap with the quintiles used in the Fried

frailty phenotype (Fried et al. 2001). Furthermore,

many aspects of the FI calculated at these quantiles

such as maximum, minimum and overall distribution

of the FI in the population overlap with results from

previous FI-Lab studies.

Methods

Data, evaluation, and cross-validation

The data used in this study are from the National

Health and Nutrition Examination Study (NHANES)

(Centers for Disease Control and Prevention National

Center for Health Statistics Updated 2014) and the

Canadian Study of Health and Aging (CSHA) (Cana-

dian Study of Health and Aging Working Group

1994). The NHANES data set consists of the 8881

individuals from the NHANES study with data for at

least 11 of the 16 available biomarkers. This sample

has an age range of 20 to 85. The data used from the

CSHA study has 973 individuals aged 65? for

whom data is available for at least 16 of the 22

biomarkers. Age distributions for these data sets are

shown in Supplemental Fig. S1, which highlights the

smaller and older cohort of the CSHA study.

Both of these data sets have previously been used to

construct FI-Lab. Blodgett et al. (2017) considered the

NHANES data set, while Howlett et al. (2014)

considered the CSHA. We will compare our results

with both of these in this paper. Since a much larger

sample size and a much larger range of ages are

available, we focus on the NHANES data set. How-

ever, major results will be also validated in the CSHA

data set. Both studies’ FI-Lab consist of many shared

deficits and cutpoints, so the differences in the FI

between the data sets are likely due to cohort effects.

These two data sets have very different cohorts, so by

applying our methods to both we test the generaliz-

ability of our approach.

The NHANES and CSHA cohorts differ in more

than just age. In Supplemental Fig. S2 we show the

distribution of FI-Lab for the CSHA cohort (white

bars) together with a resampled NHANES cohort with

the same (65–85 years) age distribution as the CSHA

(blue bars). We see that the NHANES cohort has a

significantly lower FI-Lab at the same age, i.e. it

represents somewhat healthier individuals. This could

be due to a large portion of the CSHA population being

comprised of institutionalized individuals (Howlett

et al. 2014).

The purpose of binarizing data is to construct an FI.

The FI is intended to be an inclusive and general

indicator of individual health; it has been shown to

correlate well with mortality (Kojima et al. 2018) but

also with institutionalization (Rockwood et al. 2006),

postoperative complications (Velanovich et al. 2013),

dementia (Song et al. 2014), recovery time in hospital

(Hatheway et al. 2017), and other adverse health

outcomes (Blodgett et al. 2016). Accordingly, we

compare our newly constructed FI with the existing

FI-Lab in their ability to predict 5 year mortality as

well as by their ability to predict clinical outcomes

from laboratory data. To evaluate prediction, we use

the standard area under the curve (AUC) of the ROC

curve. We obtain similar results using mutual infor-

mation (Farrell et al. 2016), as illustrated in Supple-

mental Fig. S3. We also check that our new FI behave

similarly to the previously published FI-Lab, with

respect to the clinical FI, with respect to their distri-

butions, and with respect the maximal observed FI in

the population.

Each new FI is tested using cross-validation.

Cutpoints are generated using a random half of the

population, then those cutpoints are applied to the

other half and the resulting FIs are evaluated. This is

repeated 100 times. Cross-validation allows us to

characterize any over-fitting of cutpoints.

Quantile-based cutpoints

We transform the biomarker data to a dimensionless

form using quantiles. For each individual subject, each

biomarker i is transformed to the proportion xi of the

population that has ‘‘less risky’’ values. This is

illustrated in Fig. 1 for systolic blood pressure. If an

individual has a value of 140 mmHg, which places
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them at the upper quintile of risk for blood pressure,

their systolic blood pressure score is transformed to

x ¼ 0:8, corresponding to having a higher systolic

blood pressure than 80% of the population.

Quantiles are implemented on a population scale by

performing a rank normalization of the data, where

each biomarker is sorted in ascending risk, then the

ranks (position in the sorted list) are divided by the

number of individuals. The rank normalized values xi
are given by

xi ¼
Rank of biomarker i in the population

Number of individuals in the population
; ð1Þ

and so xi 2 ½0; 1�.
Implementing binarization is straightforward using

these quantiles. We apply a global cutpoint (GCP) as a

threshold value of the rank normalized values, XGCP,

applied identically across all biomarkers. We build the

resulting FI as the average over these binarized

deficits,

FIGCP ¼
XN

i¼1

di

N
; di ¼

1 if xi [XGCP

0 otherwise

�
; ð2Þ

where N is the number of measured biomarkers. For

each biomarker, a deficit di ¼ 1 is assigned when xi is

above the threshold in the direction of risk.

Direction of risk

We determine a direction of risk for each biomarker,

before applying quantile-based cutpoints. We then

binarize with respect to the at-risk direction, as

discussed above. We do not assert that biomarkers

only have one direction of risk, but we do find that

most biomarkers have one direction that is most often

explored by the population, and so we assume this is

the dominant direction of risk during aging. This is

illustrated in the Supplemental Fig. S4.

We prefer a mortality-free approach to determining

direction of risk to reduce potential over-fitting. We

simply use the aging trends of the biomarkers to

determine the risk direction. The relation between age

and each biomarker is determined by the sign of

the Spearman’s rank correlation. A positive value

indicates the risk direction is towards large values of

the biomarker, a negative value indicates risk towards

small values. This method is effective at determining

risk directions if the population has a reasonably large

distribution of ages. Aging trends effectively classify

risk direction in both the CSHA (ages 65–104 years)

and NHANES (ages 20–85) data sets. However, we

restrict the age range for calculating risk directions to

ages 35? to calculate relations based on normal aging

behaviour.

Another method of determining risk direction is to

use mortality data, or some other adverse health

(a)

(b)

Fig. 1 a The distributions of systolic blood pressure measure-

ments in the NHANES cohort (Centers for Disease Control and

Prevention National Center for Health Statistics Updated 2014).

Short horizontal lines indicate the whole population distribution,

while unfilled, orange, and blue bars show the youngest [25, 45],

middle [45, 65], and oldest [65, 85] age groups respectively (in

years). The trend during aging is an upward shift of blood

pressure. b The rank normalized score x vs the corresponding

systolic blood pressures. The median corresponds to x ¼ 0:5.
For this and other measures, the nonlinear mapping between

x and corresponding value is always monotonic—but is either

increasing or decreasing depending on the direction of risk
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outcome. For each biomarker ROC curves can be

generated with respect to the binary outcome (e.g. 5

year mortality) and an AUC can be calculated. An

AUC above 0.5 indicates the primary risk direction is

towards high values, an AUC below 0.5 indicates risk

towards the low end. Equivalently, one could do a

logistic regression of the biomarker against an adverse

outcome and use the sign of the beta value (positive

beta would indicate risk towards high values). This

type of approach ensures that the risk directions

generate the best FI for predicting that outcome, but

they are potentially over-fit to that outcome. We find

that risk directions from mortality data are predomi-

nantly the same as the aging trend directions. The

AUC of the resulting FI with respect to 5 year

mortality is also essentially the same as with aging

trends, as shown in Supplemental Fig. S5.

We have also considered a simple approach for

two-sided cutpoints. For simplicity, we consider

symmetric cutpoints with both xi [XGCP and xi\1�
XGCP assigned as deficits with di ¼ 1. The predictive

AUC of the resulting FI is significantly worse than the

one-sided approach, as indicated by the Supplemental

Fig. S6. Accordingly, we focus on one-sided cutpoints

in this paper.

Optimally predictive binarization

In addition to quantile binarization, we also compare

with two different FIs created with cutpoints selected

for optimal prediction with respect to mortality. For

both methods we treat the population uniformly; we do

not stratify or control for possible cohort effects such

as age or sex. Additional details are provided in the

Supplemental Information.

The first, FIlogrank, based on the separation of

survival curves, has been used to create an FI-Lab

(Mitnitski et al. 2015). For each biomarker, the

cutpoint is found that maximizes the significance of

separation between survival curves of individuals with

and without the deficit by minimizing the p-value from

a logrank test (Mantel 1966).

The second method for generating optimal cut-

points is based on information theory. FIinfo uses

cutpoints selected for the highest possible mutual

information with respect to mortality at 5 years. In a

manner similar to FIlogrank every possible cutpoint is

tested for every biomarker and the cutpoints which

maximize the mutual information with respect to

mortality are selected.

Results

To evaluate the various data-based approaches to

binarization, we have calculated the AUCwith respect

to 5-year mortality for both the NHANES and CSHA

cohorts. The results are shown in Fig. 2. The perfor-

mance of all measures was qualitatively similar for

both the NHANES and CSHA data sets, though due to

the smaller cohort the CSHA data showed greater

variability in cross validation.

FIGCP, assembled from quantile based global

cutpoints, performed well. For all tested values of

XGCP the cross-validated and full dataset results agree,

indicating minimal overfitting. For the extreme values

of XGCP equal to 0 (where all biomarkers are at risk) or

1 (where none are), there is no predictive value of

FIGCP and the AUC is equal to 0.5—as expected.

Between these extremes, we see a broad maximum of

the AUC. Indeed, for global cutpoints between 0.5 and

0.9 FIGCP slightly outperforms the published FI-Lab

for both the NHANES and CSHA datasets.

The binarization approaches to maximize the

mortality prediction for the full datasets gave compa-

rable AUC values, as indicated by the columns to the

right in Fig. 2. However, cross-validation of FIinfo and

FIlogrank showed significantly lower AUC when com-

pared to the full dataset calculation. The decreased

performance in cross validation indicates that these

cutpoints have poor out of sample performance and do

not represent a generalizable risk threshold. While the

cross-validated FIinfo, using maximum information

cutpoints, appears to perform as well as FIGCP—the

cross-validated FIlogrank does not. Since using indi-

vidual cutpoints optimized for each biomarker to

predict mortality leads to an FI that is prone to

overfitting, we believe our quantile cutpoints method

will apply more generally to more datasets (especially

those with smaller cohorts), and so we focus on

quantile cutpoints for the remainder of this paper.

We were surprised that the quantile-based cutpoints

performed similarly well for both the NHANES and

CSHA datasets, despite their significantly different

age, health, and cohort sizes. Since quantile-based

cutpoints are extracted from the cohorts being
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characterized, we wanted to investigate cohort effects

more directly. Since the NHANES dataset has a large

population and a large range of ages, we obtained

quantile-based cutpoints from sub-cohorts of

NHANES for young (25–45), middle (45–65), or old

(65–85) age groups. Remarkably, the cutpoints

obtained from any one sub-cohort worked reasonably

well applied to any other cohort. However, the range

of XGCP for best prediction decreased and shifted

closer to 1 as shown in Supplemental Fig. S7. This

supports our observation that cohort effects are not

large with quantile-based cutpoints.

A crucial test of FI-Lab behavior is how well it

corresponds to an established FI-Clin. The coloured

lines in Fig. 3 shows average FIGCP values binned by

their corresponding FI-Clin values. For intermediate

values of XGCP, we see that FIGCP is monotonically

increasing with FI-Clin. Indeed, the published FI-Lab

appears to correspond to XGCP values between 0.8 and

0.9—where the FIGCP also performs well with respect

to both AUC and cohort effects. Conversely, for much

larger or smaller values of XGCP, where the AUC is

significantly worse than for the published FI-Lab, we

see that the FIGCP is not strongly dependent on FI-Clin

or even becomes non-monotonic.

We can test the versatility of the FI by its ability to

predict outcomes other than mortality. In Fig. 4 we

evaluate the prediction of four binary clinical deficits,

where the blue lines indicate the AUC for FIGCP vs the

global cutpoint XGCP. The corresponding AUC of the

(a)

(b)

Fig. 2 Cross-validated AUC of different data-based FIs with

respect to 5 year mortality for the a NHANES and b CSHA

cohorts. The dotted line indicates the AUC of the quantile-based

FIGCP vs the global cutpoint XGCP. Box and whisker plots

display the data from cross-validation: the boxes represent the

upper and lower quartiles, the whiskers go to the 99th and 1st

percentiles, and the circles are remaining outliers. The short

dashed line within each box is the median, the solid line the

mean, and the star is the AUC for the full data set without cross

validation. The horizontal grey dashed line shows the AUC of

the published FI (Blodgett et al. 2017; Howlett et al. 2014). The

rightmost two columns, as indicated, show the AUC for FIinfo
constructed from maximum information cutpoints and FIlogrank
constructed from logrank minimum p-value cutpoints
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published FI-Lab (Blodgett et al. 2017) is indicated by

the horizontal orange lines. We see that FIGCP is as

good as FI-Lab for a range of cutpoints—approxi-

mately where mortality prediction also performs best.

(All clinical deficits are tested in Supplemental Fig. S8

for NHANES and Fig. S9 for CSHA.).

We illustrate the distribution of FIGCP in Supple-

mental Fig. S10 for XGCP ¼ 0:85 and for XGCP ¼ 0:4.

Both perform as well as FI-Lab in terms of predicting

mortality (see Fig. 2). However they have very

different distributions when using the same NHANES

population. While using XGCP ¼ 0:85 leads to a sim-

ilar distribution as the published FI-Lab, XGCP ¼ 0:4

leads to significantly higher FI values. While this is not

unexpected, since the extreme value of XGCP ¼ 0:0

would lead to all FIs being equal to 1, it does lead us to

systematically examine the upper and lower limits

of the FI. In Fig. 5 we show the upper (light blue) and

lower (dark blue) 1% of the FIGCP distributions in the

NHANES dataset vs XGCP. We see that as XGCP

increases both the maximum and the minimum FIGCP
decrease. For XGCPJ0:7 the minimum is zero. For

XGCP ¼ 0:85 the range of maximal FI approximately

corresponds to the range observed for the published

FI-Lab (indicated in red, and labeled ‘‘Blodgett’’). We

also show that the 1st and 99th percentiles of FIGCP in

the CSHA dataset (black dashed lines) are similar to

those of the NHANES dataset, despite the large

differences in, e.g., the age distribution between these

cohorts.

Fig. 3 Average FIGCP vs published FI-Clin for the NHANES

dataset, for a variety of global cutpoints XGCP as indicated by the

coloured numbers at the right of each coloured line. The

coloured markers indicate the middle of the bins used for

averaging. The black dashed lines with stars show the published

FI-Lab (Blodgett et al. 2017). The FIGCP lines are dotted when

their AUC from Fig. 2 is below the published value, while they

are solid when it is above

Fig. 4 The blue lines indicate the AUC of FIGCP vs the global

cutpoint XGCP for four clinically observable deficits in the

NHANES study. The horizontal dashed orange lines indicate the

AUC from the published FI-Lab (Blodgett et al. 2017). FIGCP
performs at least as well as FI-Lab, although the range of

cutpoints which are most effective varies. Similar plots for all

clinical deficits are shown in Supplemental Fig. S8 for

NHANES and Fig. S9 for CSHA

Fig. 5 The upper 1% (light blue) and lower 1% (dark blue) of

FIGCP vs the global cutpoint XGCP for the NHANES dataset. The

dashed black lines show the 1st and 99th percentiles of FIGCP in

the CSHA dataset. The dotted diagonal black line shows the

average FIGCP in the NHANES dataset. The ranges and average

for the published FI-Lab are indicated in red (Blodgett et al.

2017)
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Discussion

For a large range of global cutpoints we have shown

FIGCP to predict mortality and adverse clinical

outcomes as well or better than FI-Lab created using

established clinical risk thresholds. This result was

replicated in the NHANES and CSHA data sets.

Furthermore, FIGCP was as informative in cross-

validation, where cutpoints were calculated in one

cohort and tested on another. Indeed, even applying

cutpoints calculated in one age group to a cohort 20 to

40 years older remained effective. These results show

FIGCP is an effective method for generating an FI from

biomarkers without prior knowledge of cutpoints, at

least for cohorts of thousands of individuals or more.

The FI created using optimal cutpoints for each

biomarker, FIlogrank and FIinfo, although highly infor-

mative, did not fare as well in cross-validation. Using

these methods in one cohort did not yield an FI which

was equivalently predictive in another cohort. Both the

logrank and maximum-information based cutpoints

strongly depend on the mortality of the particular

cohort used and, as a result, do not represent general

risk thresholds. We suggest that cross-validation of

cutpoints should always be done to ensure general

applicability. Specifically, we caution against deter-

mining optimal cutpoints with respect to the outcome

that the resulting FI will be tested on without extensive

out of sample validation.

Notwithstanding this, there is room for improve-

ment in the optimal cutpoint approaches. Considering

the whole population uniformly ignores cohort differ-

ences which can be crucial when relating measure-

ments of health to adverse outcomes. Accounting for

these differences when calculating optimal cutpoints

could increase the out of sample performance of these

methods.

An important question to address when implement-

ing FIGCP is which global cutpoint is appropriate. We

suggest that the cutpoint be selected such that the FI

has good predictive value with respect to both health

outcomes and mortality. However, in both the

NHANES and CSHA data-sets there is a large range

of cutpoints which are similarly predictive across

many of these measures. Close study of Fig. 2

indicates that XGCP of 0.6 or 0.7 would build FIGCP
that best predicts mortality, though this range of

optimal XGCP may depend on the cohort. Indeed, when

we consider which XGCP best predicts clinical deficits,

the ranges of optimal cutpoints vary significantly (see

Supplemental Figs. S8 and S9, particularly). It

appears that there is no one ‘‘best’’ global cutpoint

for general prediction of health outcomes, or that

applies equally well across cohorts.

Another criterion for picking the global cutpoint is

the interpretability of the FI within and across studies.

Within the range of cutpoints which are highly

predictive there are large differences in the distribu-

tions of FIGCP. Changing how the FI is constructed

changes how individual values of the FI are assessed.

For example, an FI of 0.2 has very different meaning

depending on how biomarkers are binarized (see

Supplemental Fig. S10).

In the context of current FI studies, an appropriate

global cutpoint appears to be XGCP ¼ 0:85. The

resulting FI0:85 is highly predictive of both mortality

and many of the clinical outcomes. Furthermore, the

maximum, minimum, and mean of FI0:85 are similar to

the previously published medical threshold FI-Lab. As

a result, individual values of FI0:85 can be more easily

interpreted between studies.

FIGCP also provides a framework for investigating

many aspects of the FI. Indeed, we find that some

common characteristics of the FI are not generally

applicable. One of the results of changing XGCP is the

systematic change of the extremely high (or low) FIs

observed in a population, as shown in Fig. 5. Varia-

tions of the maximum FI has been observed in FI-Clin

(Searle et al. 2008; Gu et al. 2009; Bennett et al. 2013;

Hubbard et al. 2015; Armstrong et al. 2015), FI-Lab

(Blodgett et al. 2017; Howlett et al. 2014), between

SHARE and SAGE multi-nation studies (Harttgen

et al. 2013), in an FI assembled from electronic health

records (Clegg et al. 2016) or primary care data

(Drubbel et al. 2013), and were found to be necessary

in network models of the FI (Farrell et al. 2016). We

have shown that any explicit choice of binarization

changes the observed FIGCP limits. Indeed, any

evaluation of binarized deficits—whether biomarker

or clinical—should have similar effects. Because of

the broad AUC maximum with respect to XGCP we

have shown that such variations of the FI-max do not

imply that the quality of predictions of mortality or

adverse health should be adversely affected. While

cohort effects contribute to observed differences of FI-

max between studies, we suggest that binarization

effects may dominate. In Fig. 5, the difference

between the upper and lower 1% of FIGCP between
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the NHANES and CSHA cohorts is less than when

XGCP is changed by only 0.1.

How might we compare FIs that use different

binarization approaches within the same cohort?

Perhaps we shouldn’t: since the ability of the FI to

predict various clinical outcomes sometimes improves

and sometimes degrades as XGCP is changed, we can’t

expect one FI to behave exactly like another. How-

ever, qualitative comparisons may be possible with

reference to extremal values of the FI such as shown in

Fig. 5. For quantile cutpoints, we also have a formal

relationship between the global cutpoint and the

population average of the FI that should facilitate

such qualitative comparisons:

hFIGCPi ¼ 1� XGCP: ð3Þ

This follows since it is precisely the fraction 1� XGCP

of the biomarkers which are labelled at risk, across all

biomarkers. This relationship is shown as a dotted

black line in Fig. 5 and appears to hold approximately

for the NHANES dataset. This remains to be better

explored in future work.

Cohort effects become evident when the same

cutpoint approaches are used between studies. While

FIGCP behaved qualitatively similarly in the NHANES

and CSHA cohorts, it exhibits quantitative differences

(see e.g. Fig. 2) that indicate cohort effects. FIGCP is

convenient for exploring cohort effects since it allows

a complete separation of the cohorts at the level of

biomarker binarization. For example, in previous work

on FI-Lab in the CSHA and NHANES studies

(Blodgett et al. 2017; Mitnitski et al. 2015) some

cutpoints were sex specific (blood pressure, creatinine,

blood urea, and hemoglobin) and some were not.

Using FIGCP we could treat all biomarkers in a generic

sex specific manner by first separating the population

by sex then calculating the rank normalized scores.

This approach does not require previous knowledge of

the cohort dependence of the biomarkers, and should

be useful in future studies of general cohort depen-

dence of the FI—including sex differences. Brief

analysis using sex-specific cutpoints show only

marginal improvements in predictive value of FIGCP
over the favourable range of XGCP (Supplemental

Fig. S11). However, qualitative differences in the sex

specific FIGCP were also observed which suggests that

it could provide a new tool for analyzing sex

differences in FIs. Detailed analyses of cohort effects

are beyond the scope of this paper but FIGCP is well

suited for these questions.

More generally, we have shown that FIs created

using population-based approaches can effectively

treat biomarkers without prior medical knowledge.

The same data-based approaches could also be useful

in approaching FIs for metabolomics, proteomics, and

other omics-style applications. There is no Henry’s

clinician’s handbook (McPherson 2017) to select

omics cutpoints from, and the large number of

measurements in an omics dataset necessitates an

automated method for treating potential deficits. An FI

based on omics data (FI-omics) would provide insight

into how frailty manifests itself on the most funda-

mental levels, and a quantile approach should facil-

itate FI-omics.

Similarly, a general method of creating an FI from

biomarker measurements opens the door to many

more animal model applications. Previous work has

been done to create an FI-Lab in laboratory mice

(Kane et al. 2019). Since there is no clinical guide for

treating mice, cutpoints were selected in reference to

measurements in young mice. This requirement of

having a healthy cohort to use as a benchmark is

incompatible with studies where there is no clearly

defined healthy group available. A generic approach

which can be applied to any set of biomarker

measurements allows the FI to be used more generally,

and should then facilitate comparisons of health and

aging between organismal models and human studies.

In this study we have created and explored an

effective quantile-based method of creating FIs from

biomarker data. We demonstrated that our methods

performs as well as or better than established methods

which use diagnostic thresholds. Furthermore, we

show that they are more robust to cohort effects than

methods based on optimal prediction. These methods

are applicable to any set of continuous valued data

where information on the age or mortality of the

population is available, and they do not require

previous knowledge of how each measurement relates

to health.We believe that our global cutpoint approach

will be a powerful tool for examining cohort differ-

ences since cutpoints can be calculated for that cohort

without prior knowledge of the biomarkers. We found

that the main limitations in our approach are based on

choosing an appropriate global cutpoint for a given

study. Accordingly, we have raised the question of

how to compare individuals across studies which have
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used different approaches for creating an FI. Never-

theless, we show that there is overlap between FIs

created using global cutpoints around XGCP ¼ 0:85

and other methods for creating FI-Lab.
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