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Abstract
We investigate single file diffusion (SFD) of large particles entering a semi-infinite tube, such as
luminal diffusion of proteins intomicrotubules orflagella.While single-file effects have no impact on
the evolution of particle density, we report significant single-file effects for individually tracked tracer
particlemotion. Both exact and approximate ordering statistics of particles entering semi-infinite
tubes agree well with our stochastic simulations. Considering initially empty semi-infinite tubes, with
particles entering at one end starting from an initial time t= 0, tracked particles are initially super-
diffusive after entering the system, but asymptotically diffusive at later times. For finite time intervals,
the ratio of the net displacement of individual single-file particles to the average displacement of
untracked particles is reduced at early times and enhanced at later times.When each particle is
numbered, from thefirst to enter (n= 1) to themost recent (n=N), wefind good scaling collapse of
this distance ratio for all n. Experimental techniques that track individual particles, or local groups of
particles, such as photo-activation or photobleaching offluorescently tagged proteins, should be able
to observe these single-file effects. However, biological phenomena that depend on local concentra-
tion, such asflagellar extension or luminal enzymatic activity, should not exhibit single-file effects.

Introduction

Single-file diffusion (SFD) describes a one-dimen-
sional system of diffusing particles that cannot pass
one another—essentially diffusion with collisions [1].
Hard-core repulsive interactions keep particles in the
same order, without affecting their collective motion.
This is in contrast to simple diffusive processes with-
out interactions, where particles can exchange their
order as they pass each other.

SFD can be realized experimentally with hard-core
particles in a relatively narrow channel, and can be
easily visualized in colloidal systems [2]. SFD can exhi-
bit subdiffusive, mean-square displacement (MSD)

t ,1 2~ behaviour [3–9]. This subdiffusive behaviour of
tracer particles is due to the no-crossing constraints
imposed by adjacent particles, and differs from the
standard MSD t~ behaviour of simple-diffusion (SD)
[10]. The actual behaviour for SFD depends on both
the initial conditions and the boundary conditions of
the system [3, 7, 11, 12]. Notably, starting particles in a
tight cluster leads to initially ballistic motion [12],
while a tracer particle at the edge of a Gaussian cluster
of particles asymptotically exhibits MSD t~ at late

times but with a single-particle diffusivity D that is
enhanced by the logarithm of the number of particles
N in the cluster, so that x N Dtln 4N �á ñ [11].
Subdiffusive MSD t1 2~ for tracer-particle displace-
ment applies only to SFDwith a uniform-density.

While tracer particle behaviour in single-file sys-
tems is generally not diffusive, the evolving density
profile in a single-file system is simply diffusive and is
the same between SD and SFD [1, 10, 13]. This is
because single-file effects can be implemented in
unbiased diffusive systems by simply exchanging par-
ticle identities when particles change order. This
exchange of particle identities leaves densities unchan-
ged [1]. While biased random walks can have distinct
collective behaviour with SFD [14], we only consider
unbiased diffusion in this paper. We are interested in
tracer particle dynamics, since they can be easily char-
acterizedwith fluorescently labelled proteins.

Luminal αTAT1 catalyzes the post-translational
acetylation of microtubules [15, 16]. αTAT1 appears
to enter the microtubule from one end [17], and sub-
sequently diffuses [18]. Motivated by this, we consider
SFD of particles into one end of an initially empty
semi-infinite one-dimensional channel. While single-
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file effects in finite channels have been previously con-
sidered, it was only with initially full tubes that subse-
quently empty [19]. A classic study by Odde [20]
considered diffusion into microtubules, but did not
consider single-file effects.Microtubules have an inner
radius of 7 nm [16] and αTAT1 has a radius of 3.5 nm
[16], or half the microtubule inner radius, suggesting
SFDmay occur forαTAT1 insidemicrotubules.

In this paper, we consider the behaviour of luminal
particles entering into, and diffusing inside, micro-
tubules.Wemodel themicrotubules as a homogeneous
1D tube, initially empty, where particles enter at one
end (tip) and diffuse along the length. Our model sys-
tem is semi-infinite, since we are studying the transient
regimewhere the particles are entering the tube.

Methods and analysis

More precisely, we consider the average occupation
density x t,( )r for a semi-infinite interval x 0,[ )Î ¥
that is initially empty, with x t, 0 0.( )r = = We are
interested in the dynamics of invasion from a bulk
reservoir that imposes a constant density at the tip,

x t0, .tip( )r r= = For example, this would corre-
spond to an in vitro experiment in which a fixed
concentration of αTAT1 was imposed around a
collection of initially emptymicrotubules. The average
density is given by the solution of the diffusion
equation, so that x t x Dt, erfc 4 ,tip( ) ( )r r= where
D is the single-particle diffusivity and erfc is the
complimentary error function [20, 21]. Integrating
this we expect that the average number of luminal
particles near each tube-tip increases with

N t Dt4 . 1tip( ) ( )r p=

What do we expect for tracer particles with single-
file diffusion? The normalized probability density is

x t x Dt Dt, erfc 4 4 , 2( )ˆ ( ) ( ) ( )r pº

where xd 1.
0

ˆò r =
¥

With N single-file particles,

there is a distinct probability distribution for the
position of each particle, i.e. each of the random
variables x1, x2, ... , xN where x1 is first to enter (i.e.
furthest from the tip) while xN is last to enter (i.e.
closest). Using k-order statistics [11, 22] the probabil-
ity distribution for the position of the nth particle ,
which is farther from the the tube tip than N− n
particles, and closer to the tube entrance than n 1-
particles, is
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Equation (3) originates from a binomial distribution
and is a product of four terms. The first, combinatorial,

term accounts for the order combinations of the
particles. The second term, with exponentN− n, is the
probability thatN− n particles are closer to the tube tip
than the nth particle. The third term is the probability
density of a single (the nth) particle. The fourth term,
with exponent n 1,- is similar to the second term and
is the probability that n 1- particles are further from
the tube tip than the nth particle. Equation (3) can be
maximized with respect to xn to find themost likely x .n*
In the limits of n, N, and N n 1,�- we obtain an
implicit equation,

x
n

N
d 1 , 4

x

0

n
�ˆ ( )

*

ò r -

which is identical to the analogous expression of
Gumbel [22].

Equation (4) implies that each particle occupies a
N1 fractionof the integratedprobability density, so that

the first n particles to enter the tube will occupy n/N of
the integrated probability density. However, the average
position of the nth particle should correspond to halfway
through its share of the integrated probability density,

so that x n Nd 1 1 2 .
x

0

n

ˆ ( )ò r = - - This should

apply to all n andN. In the approximation that the most
likely position xn* equals its average position, which
holds when the k-order statistics are sharply peaked [11],
we thenobtain
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This equation asymptotically equals equation (4)when
n, N 1.� The integral on the left-hand-side can be
evaluated exactly, yielding an implicit equation for xn*
that we solve numerically,
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Below, we find with stochastic simulations that
equations (5) and (6) are accurate even for small n
andN.

We use stochastic simulations to investigate the
dynamics of the single file system, to compare with our
analytical results. We discretize our tube with a uni-
form lattice spacing x.D After each timestep t ,D N(t)
particles are chosen randomly with replacement to
each attempt to move randomly to the right or left
with equal probability. To enforce the SFD condition,
moves that lead tomultiple occupancy are prohibited.

The occupation probability at the entrance is com-
pletely enforced by the quantity ptip. At the end of each
timestep, the occupancy of the entrance lattice site at
x= 0 is set to one with probability ptip, and to zero
with probability p1 .tip- This ptip occupancy condi-
tion at the entrance is the mechanism by which addi-
tional particles are introduced to the tube. Since we
track the nth particle after its first appearance at time
tn, control of the occupancy of the entrance site by ptip
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means that reflecting and absorbing boundary condi-
tions on particle motion at the tip are fully equivalent.
We vary p 0, 1 .tip ( ]Î

For simplicity, we use units in which xD =
t 1,D = corresponding to D x t2 0.5.2 ( )= D D =

When shown, error bars are statistical error bars
over 1000 independent stochastic simulations.

Results

First, we consider the occupation probability within
the semi-infinite tube. In figure 1, we plot the average
occupation probabilities of our stochastic single-file
simulation for two distinct times and various values of
ptip (shown with points). At both times, the agreement
with equation (2), scaled to the imposed ptip and
shown with solid lines, is striking. As shown by the
residuals in the inset, any systematic effects due to the
imposition of single-occupancy in our simulation are
currently too small to resolve, which confirms that
SFD has essentially the same collective behaviour as
simple diffusion [7, 9, 19]. The absence of SFD effects
in particle density implies that dynamical processes,
such as microtubule acetylation [15–18], that do not
distinguish between diffusing particles, should behave
identically with orwithout single-file effects.

While the dynamics of the average density are not
changed by SFD, the behaviour of individually tracked
SFD particles is significantly different than in SD.
Figure 2 shows the average position of the nth tracked
particle from the tip versus time. Our stochastic simu-
lation results are shown with points, where averages
are over particles that are still in the tube at time t.
Numerical solutions of xn* from equation (6) are
shown with solid lines, where we use N from

equation (1). We see that equation (6) is a good
approximation for all t.

To evaluate the diffusive, subdiffusive, or super-
diffusive nature of the tracked particlemotion, we plot
xná ñ against the time since the nth particle entered the
tube, i.e. t− tnwhere tn is the time the particle entered
the tube. The inset of figure 2 shows that xná ñ initially
grows superdiffusively, with position increasing faster
than t t ,n

1 2( )- and asymptotically approaches diffu-
sive behaviour, where position increases as
t t .n

1 2( )- Such early super-diffusion of tracked SFD
particles occurs when there is a density gradient [12].
In our case, this gradient is from the tip (as shown in
figure 1) but decreases in magnitude as time increases
since the characteristic length-scale of the diffusive
density field growswith time.

We also evaluate a squared distance ratio,
R x x ,n n

2 2= á ñ á ñ the ratio between the squared
average position of the nth tracer particle, x ,n

2á ñ
and the average bulk position squared, x ,2á ñ where
x Dt 4pá ñ = is found by averaging over
equation (2). The squared distance ratio Rn can provide
information on how tracer particlemotion differs from
particle motion in the bulk, despite equal average den-
sities in the tube. In figure 3 we plot Rn vs.
N t n 1 2 .( ) ( )- The scaling with N n 1 2( )- is
predicted by the right-side of equation (6). We observe
good scaling collapse for different n and different ptip,
indicating that the essential physics of single-file effects
are similar for differentn anddifferent overall densities.

The average bulk particle position xá ñ does not
depend on the presence of single-file effects, as demon-
strated in figure 1. Therefore, we see in figure 3 that sin-
gle file particles that have recently entered the tube
(N not significantly larger than n) are closer to the tube
entrance than the average bulk position of all particles,

Figure 1.Average particle density p x( ˜) versus scaled distance x x Dt4˜ º along the semi-infinite 1D system. Points show themean
occupation fraction for discrete stochastic SFD simulations at two distinct times (unfilled points at t 4.6 106= ´ andfilled at
t 4.6 107= ´ ), withfixed tip occupation probabilities p 1,tip = 0.5, 0.2 and 0.1 (red squares, blue circles, green upward pointing and
purple downward pointing triangles, respectively). Thin black lines indicate analytic diffusion results, from equation (2), scaled to ptip
at x 0.˜ = The inset shows the residuals, or differences between simulation and analytical results, at t 4.6 10 ,7= ´ with statistical
error bars.
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i.e. R 1,n < as expected. After more particles have
entered the tube, with N n 1 2 2.5,�( )- the aver-
age position of the nth particle is equal to the average
position of all particles, i.e. Rn= 1. In figure 2, particles
which have recently entered the tube behave super-
diffusively and trend towards diffusive behaviour at
later times. Figure 3 shows a similar effect, as Rn versus
N n 0.5( )- initially has a relatively large slope, and
flattens out as N increases. For large N, as illustrated
by the solid black line in figure 3, we observe
R N nlog 1 2 .n ( ( ))~ - This dependence can be
extracted from equation (6) by Taylor expansion of
the erfc, and solving for the leading behaviour of
x t N nlog 1 2 .n

2 ( ( ))~ - This gives R x xn n
2 2� á ñ ~

N nlog 1 2 .( ( ))- This R Nlogn ~ dependence is
essentially the same as the Nlog drift enhancement

reported by Aslangul for the leading particle within an
expanding cluster [11].

Discussion

We have described particles entering into and then
diffusing single-file within tubes. Consistent with
previous studies [7, 9, 19], the evolution of the average
density with unbiased SFD is identical to simple
diffusion (SD) [1, 10, 13], as shown in figure 1. This is
because SFD can be recovered from SD by swapping
particle labels upon collisions [1], and this has no effect
on density dynamics.

We emphasize that anomalous tracer diffusion
with SFD does not imply either enhanced or hindered

Figure 2.Average particle position xná ñ versus time, using p 1.tip = The results from stochastic simulations are shown as coloured
points, as indicated, while the numerical solutions of equation (6) are shown as correspondingly coloured solid lines. The black dashed
line illustrates x t ,n

1 2~ i.e. diffusivemotion. The inset shows xná ñ versus the time the nth particle has been in the tube, t− tn, as well
as a black dashed line for x t t .n n

1 2( )á ñ ~ - Statistical error bars for numerical data are smaller than the data points.

Figure 3. Squared distance ratio R x xn n
2 2º á ñ á ñ versus scaled particle number N t n 1 2 ,( ) ( )- for various tracked particle

number n as indicated. xná ñ is the average position of the nth tracked particle, x Dt 4pá ñ = is the average particle position from
equation (2), andN(t) is the total number of particles in the tube. The dashed horizontal line shows R 1,n = where the x x .ná ñ = á ñ
Points are from stochastic simulation, using both p 1tip = (filled points) and p 0.1tip = (unfilled points). Statistical error bars are
shown. The solid black line illustrates the expected N nlog 1 2( ( ))- asymptotic behaviour at largeN from equation (6).
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bulk transport. Stern and Berg [23]model the growth
of bacterial flagellar filaments by SFD of flagellin sub-
units through the flagellar lumen and addition at the
distal flagellar tip. However, because the diffusive
transport determines the flagellar growth, either SD or
SFD should give identical results. Similarly, Yang et al
[24] contrast single-file (constant rate) and ‘Fickian’
(time-dependent rate) release profiles of drugs
through cylindrical nanochannels, while SFD should
provide the same density dynamics as SD.

We observe single-file effects in traced individual
particles. Figure 2 shows that individual single-file
particles have super-diffusive behaviour immediately
after entering the tube, and then slowly trend towards
x t2á ñ ~ diffusive behaviour. We also find that indivi-
dual particles experience a steady increase in the ratio
of average tracer position to average bulk position,
with figure 3 demonstrating that this exhibits scaling
collapse across all traced particles in the system.

SFD requires that diffusing particles are of com-
parable size with the tube dimensions. Two additional
physical effects are correlated with these large particle
sizes. The first is significantly slower single-particle
transport (D) due to wall-mediated drag [20]. The sec-
ond is an upper limit imposed on the local luminal
density achieved by close-packing of particles. We
have included this latter effect in our stochastic lattice-
based SFD model, with a single-occupancy condition.
As seen in figure 2 the single-occupancy condition
alone, at the highest local densities, does not lead to
significant differences in transport compared to SD.
When SFD is observed, this implies that reduced sin-
gle-particle diffusivity due to wall-mediated drag is the
primary physical effect expected for enzymatic activ-
ity, such asmicrotubule acetylation by luminalαTAT1
enzymes [17].

Biologically relevant values of ptip for αTAT1 may
be estimated with diffusion-limited rates [25]. With
free diffusivity D = 79.3 μm2 s−1 [18], MT radius
s = 7 nm [16], and concentration 0.17 Mr m=
[26, 27], the diffusion-limited [25] influx rate can be
estimated at sD4 220rG = = molecules per second.
With the inner MT diffusivity 0.27μm2 s−1 [18], a
typical distance traveled by a freely diffusing particle in
1d in the time before another molecule enters is
50 nm, suggesting one molecule would typically move
approximately seven lengths before another arrives,
giving p 0.14.tip » Other factors could increase this
estimate of ptip, such as elevatedαTAT1 concentration
at clathrin coated pit sites proposed for αTAT1 influx
[17], or for in vitro experiments [16, 18], or the pre-
sence of single file particles blocking the progress of a
recently entered particle. Indeed, cryoelectron micro-
scopy of MT from neuronal processes in brain tissue
shows closely spaced luminal particles with approxi-
mately 3.5 nm radius [28]. This suggests crowding
effects may be significant in at least some MT, includ-
ing SFD effects of tracked particles.

While transport is determined by the single-parti-
cle diffusivity D, measuring D through the motion of
individual fluorescently labeled particles over longer
timescales must take into account any single-file
effects. One approach is to limit tracking to short
timescales to avoid particle collisions [18]. However,
for longer timescales inferringD and/or inferring SFD
is straight-forward: particle position in time depends
on the sequence that particles enter the tube—in our
model, this dependence is on the value of n (through
equation (6) and figures 2 and 3). We note that FRAP
(fluorescence recovery after photobleaching) [29] will
be qualitatively different with SFD—since there can be
no invasion of fluorescent particles into bleached
regions. We would expect local bleached plugs of par-
ticles to slowly move and expand as the left and
right ends move apart, with average position
x x 2left right( )* *+ and width x x ,left right( )* *- with simi-
lar results for locally photoactivated regions. In light of
SFD effects on tracked fluorescent particles, assessing
single-particle diffusivity D by fitting density profiles
using equation (2) is probably the simplest approach.
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