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Dynamical scaling: The two-dimensionalXY model following a quench
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To sensitively test scaling in the two-dimensionalXY model quenched from high temperatures into the
ordered phase, we study the difference between measured correlations and the~scaling! results of a Gaussian-
closure approximation. We also directly compare various length scales. All of our results are consistent with
dynamical scaling and an asymptotic growth lawL;(t/ ln@t/t0#)

1/2, though with a time scalet0 that depends on
the length scale in question. We then reconstruct correlations from the minimal-energy configuration consistent
with the vortex positions, and find them significantly different from the ‘‘natural’’ correlations — though both
scale withL. This indicates that both topological~vortex! and nontopological ‘‘spin-wave’’ contributions to
correlations are relevant arbitrarily late after the quench. We also present a consistent definition of dynamical
scaling applicable more generally, and emphasize how to generalize our approach to other quenched systems
where dynamical scaling is in question. Our approach directly applies to planar liquid-crystal systems.
@S1063-651X~99!07607-2#

PACS number~s!: 05.70.Ln, 64.60.Cn, 61.30.Jf
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I. INTRODUCTION

The study of nonequilibrium dynamics in systems w
continuous symmetries has burgeoned@1#. Liquid-crystalline
systems@2–8#, evolving after being quenched into an o
dered phase, provide picturesque examples of topologica
fects and their interactions. Evolving systems of topologi
defects are also found in applications from cosmology@9# to
planar ferromagnets@10,11#.

A relatively simple system with a continuous symmetry
the two-dimensionalXY ferromagnet with no disorder
which supports singular vortices that carry topologic
charge and have logarithmic interactions. The equilibri
properties have spawned a rich and fertile literature pun
ated by the work of Kosterlitz and Thouless@12#. More re-
cently, the nonequilibrium behavior of the two dimension
~2D! XY model following a quench to below the Kosterlitz
Thouless critical temperatureTKT has been studied theoret
cally @13–20# and also experimentally@3,5# with specially
prepared liquid-crystal systems. Related 2D liquid-crys
systems have also been studied theoretically@21–23# and
experimentally@2,4,8#.

Following a quench att50 from a disordered phase int
an ordered phase, a crucial issue is whether there is dyn
cal scaling@24# at late timest, where

C~r ,t ![^fW ~x,t !•fW ~x1r ,t !&5 f ~r /L !. ~1!

Here, fW is the XY order parameter,f (x) is a time-
independent scaling function for the two-point correlatio
and L(t) is a growing length scale that captures all of t
correlation dynamics. The explicit or implicit assumption

*Present and permanent address: Centro de Ciencias de la M
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dynamical scaling underpins most theoretical descriptions
phase-ordering structure@1,25–27#. Unfortunately, apart
from a limited number of solvable systems, there exist
theoretical approaches toa priori determine dynamical scal
ing. Indeed, the presence or absence of dynamical sca
remains an unresolved issue in the 2DXY model @18,22#.
This is surprising, since simple systems that break sca
are seen as exceptions@28#. For example, the weak-scalin
violations in the conserved spherical model identified
Coniglio and Zannetti@29# are due to noncommuting spher
cal and asymptotic time limits@30# related to similar phe-
nomena in equilibrium critical dynamics@31#.

Stronger scaling violations are found in one- and tw
dimensional systems with nonsingular topological textu
@11,32#. These systems segregate into domains of simila
charged textures, similar to the morphologies seen
reaction-diffusionA1B→B systems@33#. The domain size
and the texture separation provide distinct growing len
scales. Within this context, the difficulty in resolving scalin
in the 2DXY model can be understood. Viewed as a plas
of overdamped charged vortices with logarithmic intera
tions @34#, quenched from high temperatures, the 2DXY
model sits exactly at the marginal dimension (d52) below
which segregated morphologies with strong scaling vio
tions are expected, and above which a mixed morphol
with only one length scale, the particle separation, is s
@10#. Suchparticle systems are expected to scale, with
domain structure, at the marginal dimension@10#; however,
the asymptotic regime could be quite late.

With dissipative dynamics and the assumption of dyna
cal scaling the predicted asymptotic growth law of the ch
acteristic length scale is@27#

L~ t !.A~ t/ ln@ t/t0# !1/2, ~2!

where A and t0 are the nonuniversal amplitude and tim
scale, respectively. This growth law characterizes the co

eria
.,
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PRE 60 213DYNAMICAL SCALING: THE TWO-DIMENSIONAL XY . . .
lations with a lengthL1/2(t), whereC(L1/2,t)51/2, as well
as the vortex separation with a length-scaleLv(t), where the
vortex densityrde f51/Lv

2 . These lengths will only differ by
prefactors and by subdominant contributions at late tim
@Equation~2! also describes the annihilation time of an is
lated vortex-antivortex pair with an initial separationL @17#.#
The logarithmic factor is crucial, and stems from the log
rithmic vortex mobility. The same growth law is expected
liquid-crystal films with vortices@27#.

The analytical evidence for scaling violations is mos
suggestive: explicit violations in four-point correlations@16#
and multiple energy scales seen in energy-scaling calc
tions @27#. These would indicate multiple lengths that diff
at most by logarithmic factors, consistent with the margi
dimensionality within a reaction-diffusion context@10#. In-
deed, approximation schemes for correlation functions in
2D XY model typically find scaling but with no logarithmi
factors ~see, e.g.,@26,35#; see also@36#!. Additionally, the
2D XY model quenchedbetweentwo temperatures below
TKT , and coarse grained to a fixed scale to eliminate bo
vortex pairs, is solvable@37# and dynamically scales withou
any logarithmic factorL(t);t1/2.

Previous numerical evidence for scaling violations
stronger. Cell-dynamical simulations ofXY models
quenched toT50 by Blundell and Bray@18# found that two-
point correlations did not scale well with respect to the d
fect separationLv , though they scale with respect to th
correlation lengthL1/2 ~see also@15,20#!. Mondello and
Goldenfeld @13# also found indications of multiple lengt
scales. Simulations of nematic films by Zapotockyet al. @22#
found a variety of effective growth exponents, though ag
the correlation function appeared to scale~see also@21,23#!.
Other simulations on the 2DXY model at finite temperature
have recovered the expected growth law@17,19#, and have
found dynamical scaling@19#. Simulations of quenches t
T50 in hard-spin systems found dynamical scaling of c
relations even though the dynamics froze at late times@14#!

Experiments on liquid-crystal systems, following the pi
neering work by Shiwakuet al. @2#, have recovered thet1/2

growth of defect separation after a quench, though with
sufficient resolution to determine logarithmic factors@3–5,8#
and with some difficulties in achieving an unbiased~sym-
metric! quench@4,5#. When measured, the structure@7,8# and
other two-point correlations are consistent with dynami
scaling@3#.

In this paper we want to clarify the existence or abse
of dynamical scaling in the 2DXY model. A successful strat
egy can then be applied more generally to systems that s
to violate scaling, in particular to systems with more comp
cated collections of defects@28#.

We first discuss the appropriate definition of dynami
scaling, within the context of systems relaxing after
quench. We then derive approximate forms for various c
relation functions via Gaussian closure techniques, wh
impose scaling. While we do not expect them to exac
match the measured correlations, they are used to norm
the measured values in order to enhance our sensitivit
scaling or its absence. In combination with the growth la
we have a ‘‘null hypothesis,’’ which would be broken b
scaling violations. We present our simulation data and fi
no evidence for scaling violations. We then explicitly reco
s.
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struct a two-point gradient correlation function, within th
periodic system using only the vortex positions and charg
and find it significantly different from the unreconstructe
scaling form. However, both correlations scale with resp
to the defect density. This indicates that both topologi
~vortex! and nontopological ‘‘spin-wave’’ contributions to
the order parameter are asymptotically relevant, with cha
teristic lengths that remain asymptotically proportional.

II. DYNAMICAL SCALING

In phase ordering, dynamical scaling colloquially mea
that there is a single characteristic length scale growing
time. This leads to a rough-and-ready symptom of dynam
scaling violations: multiple length scales with distinct grow
laws, see for example@22,38#. While useful as a guide, this
approach has limitations. One must first identify ea
asymptotic growth law, i.e., the effective exponent after it
constant in time and before finite-size effects of the sam
become important. Practically speaking, at most one or
decades in time are available in simulations if a 5% ex
nent variation is tolerated, and often less than a decad
experiments. When the scaling prediction for the growth l
is nota priori known, this approach on its own is dangerou
Indeed, subdominant corrections to the asymptotic gro
law @39# can depend on the method used to extract the len
scale@40#. Even the observation of two asymptotically di
tinct length scales does not demonstrate that they are
namically interconnected. A silly example helps here: co
sider a sample made from gluing together a conser
binary-alloy system~asymptotic growth lawt1/3), and a non-
conserved order-disorder alloy system~growth law t1/2).
Clearly two-growth laws could be observed in the hybr
but they should not imply scaling violations.@Such dynami-
cally independent subsystems would lead to correlation fu
tions that are sums of scaling functions.# The situation is
more complicated when both lengths are observed withi
homogeneous sample, such as the asymptotic behavio
monopoles and vortex lines in bulk nematics@6#. Nontrivial
interrelationships of observed lengths can generally only
resolved with the help of simplified dynamical models, f
example, see@32,41#.

A more precise definition of dynamical scaling is th
two-point equal-time correlations have a time-independ
scaling form, see Eq.~1!, which also implies scaling of the
structure factor

S~k,t ![^fW ~k,t !•fW ~2k,t !&5Ldg~kL!, ~3!

whereg(x) is a time-independent scaling function. This
directly measured in scattering experiments, can be well
proximated analytically, and is easy to extract from simu
tions. For systems with singular topological defects, such
domain walls, hedgehogs, vortices, or vortex lines, a gen
alized Porods law@1# connects the density of defect corerde f
to the asymptotics of the structure via

S~k!;rde fk
2(d1n), kL@1, ~4!

wheren characterizes the defect type@for the 2DXY model,
n5d52#. This directly implies that the length derived from
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214 PRE 60F. ROJAS AND A. D. RUTENBERG
the defect densityLv is asymptotically proportional to the
correlation lengthL1/2 when the correlations dynamicall
scale.

This definition is still incomplete, since systems can s
isfy Eq. ~3! yet have distinct lengths intimately connected
the dynamics — e.g., in the one-dimensional~1D! XY model
@32#. Additionally, higher-point correlations can be co
structed in the 2DXY model, which explicitly donot scale
@16,42#. Should these be viewed as violations of dynami
scaling? Fortunately a self-contained definition of dynami
scaling exists, introduced by Bray and Rutenberg@27#. In
order to calculate the rate of free-energy dissipation in
coarsening system, they additionally require the scaling
the time-derivative correlation function

T~r ,t ![^] tfW ~x,t !•] tfW ~x1r ,t !&5~ L̇/L !2F~r /L !, ~5!

whereF is a new time-independent scaling function andL̇
[dL/dt. Note that power-law growth, with or without add
tional logarithmic factors, implies that the prefactor (L̇/L)2

;1/t2. If dynamic scaling holds both forT(r ,t), as just de-
fined, and forC(r ,t), then the growth exponent can be d
termined through a self-consistent energy-scaling appro
@27,43#. This restricted definition of dynamical scaling,
bothC(r ,t) and T(r ,t), picks up the scaling violations of th
1D XY model @32#, and clearly separates the role of tw
point from higher-point correlations@42#. We use this re-
stricted definition here, and recommend it in the study
systems where dynamical scaling is questioned but Eq
seems to be satisfied.

III. DYNAMICS

We study purely dissipative quenches of 2DXY models
from well above to below the Kosterlitz-Thouless transiti
temperatureTKT . Because of the line of critical points in th
2D XY model @12# the correlations in quenches to 0,T
,TKT have a modified scaling form@19,37#. Essentially,
critical equilibrium correlations have no characteristic leng
scale and so the standard coarse graining@1# to make tem-
perature irrelevant to large-scale correlations is impossi
However, there is no indication that temperature changes
namical scaling, or its absence, in the 2DXY model. Accord-
ingly, in this paper, we only investigate quenches toT50.
The nonconserved coarse-grained dynamics@44# are

F@fW #5E d2x@~¹fW !21V0~fW 221!2#,

] tfW 52GdF/dfW ,

^fW ~x,0!•fW ~x8,0!&5Dd~x2x8!, ~6!

whereG is a kinetic coefficient that sets the time scale,V0 is
the potential strength that sets the ‘‘hardness’’ of the vec
spins, andD characterizes the initial disordered state. T
orientation of the two-component order-parameterfW (x) de-
fines an angleu(x)P@0,2p#, which is identical to theXY
phase. The numerical implementation of the dynamics is
cussed below in Sec. IV A.
t-
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An overview of the evolution: we start with a rando
high-temperature configuration and quench toT50. The or-
der parameter locally equilibrates, but competition betwe
degenerate ground states leads to topologically stable v
ces, with integer charges. The annihilation of opposit
charged vortices drives the subsequent dynamics, and c
acterizes one possible growing length scale — the vor
separationLv . Of course, the order-parameter field around
moving vortex is not rigidly comoving@27#, and so nonsin-
gular ‘‘spin-wave’’ distortions are generated by the dyna
ics even atT50. The dynamics, emphasizing the vortice
can be visualized with a Schlieren pattern, see Fig. 1, an
gous to those used in the study of liquid-crystal films@45#.

Scaling correlations from Gaussian closure. Several ap-
proximation schemes eliminate high-order correlations in
evolution equation for two-point correlation
@1,25,26,35,46#. We use a Gaussian-closure approximatio
which gives quite good two-point correlations. We will us
the results to normalize our correlations. This allows fo
more sensitive test of scaling properties than has been
sible before, and also highlights weaknesses of this appro
~see also@15,47#!.

For generalO(n) fields, we start with the Bray-Humayun
Toyoki approach@35#. We introduce an auxiliary fieldmW

parallel to the order parameterm̂5f̂. The zeros ofmW match
the positions of the topological defect cores, whileumW u is
roughly the distance to the closest defect core. Assumin
Gaussian probability distribution formW results in two-point
correlations between (r 1 ,t1) and (r 2 ,t2):

Cg~r ,t1 ,t2!5
ng

2p FBS 1

2
,
n11

2 D G2

FS 1

2
,
1

2
;
n12

2
;g2D ,

~7!

where r 5ur22r1u, B(x,y) is the beta function, and
F(a,b;c;z) is the hypergeometric function. The result is e
pressed in terms of the the normalized two-point, two-tim
correlation function ofmW :

g5^m~1!m~2!&/@^m2~1!&^m2~2!&#1/2.

The various approximation schemes differ on the man
of determiningg. We use the the systematic approach int
duced by Bray and Humayun@46# that produces

g~r ,t1 ,t2!5S 4t1t2

~ t11t2!2D d/4

exp$2r 2/@4~ t11t2!#%, ~8!

whered is the spatial dimension. For equal-time correlatio
we obtain the scaling formCg(r ,t)5 f BPT(x), where x
5r /L andL(t)5(4t)1/2. This highlights a problem with all
existing correlation-closure approaches as applied to 2DXY
models, since while they recover a scaling form they m
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FIG. 1. Schlieren patterns in various times after a quench of the 2DXY model in a size 1283128 system. The intensity is sin2(2u), where
u is the localXY phase. Each vortex emanates 8 brushes, alternating white and black.
c

the logarithmic factor in the growth law@36#. The same scal-
ing variable is used in the time-derivative correlation fun
tion,

Tg~r ,t !5
1

16t2
@g2x4Cgg~x!1g~x424x212d!Cg~x!#,

~9!

whereCg[]Cg /]g andCgg[]2Cg /]g2.
-
IV. SIMULATION

A. Simulation methods

We use a standard cell dynamical systems~CDS! update
@48# for soft spinsfW ( i,t), on a periodic lattice, wheret is
now a discrete integer time andi is the position:

fW ~ i,t11!5
D

4 (
j

@fW ~ j ,t !2fW ~ i,t !#

1Ef̂~ i,t !tanh@ ufW ~ i,t !u#, ~10!
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216 PRE 60F. ROJAS AND A. D. RUTENBERG
wheref̂5fW /ufW u is the unit vector. We use the standard v
uesD50.5 andE51.3. The dynamics are stable and ha
the same attractors as Eq.~6!. We do not observe pinning
effects in quenches toT50 ~see also@13,15,18,21,22#!. The
random initial conditions are chosen uniformly for ea
component from@20.1,0.1#.

We identify vortices with three methods that pro
equally effective: by looking for the zeros in the vector fie
by looking for plaquettes around that the phase rota
through62p, and by finding the peaks on the local ener
densityEi52( jfW ( i)•fW ( j ), where the sum is over neare
neighbors of sitei. Due to the periodic boundary condition
the system has no net vorticity.

In addition to tracking the number of vortices, we me
sure several correlations of the ‘‘hardened’’ order parame
f̂( j ,t):

C~r ,t !5^f̂~ j ,t !•f̂~ j1r ,t !&. ~11!

The averagê •••& is over the independent sets of initi
conditions, and includes a spherical average and an ave
over lattice sitesj . The structure factor is also calculated:

S~k,t !5^fW ~2k,t !•fW ~k,t !&. ~12!

We also measure the time derivative correlation function

T~r ,t !5^d tfW ~ j !•d tfW ~ j1r !&, ~13!

whered tfW 5fW (t11)2fW (t) is a finite difference approxima
tion for the time derivative.

To probe the distinction between vortex and nonvor
contributions to correlations, we measure a phase-grad
correlation function:

D~r ,t ![^“u~ j1r ,t !“u~ j ,t !&, ~14!

5h~r /L !/L2, ~15!

where the second line is the natural scaling ansatz for
correlations. Note that̂“u&50. We then reconstruct th
vortex contributionDr(r ,t) directly from the charges an
locations of the vortices at a given time. From the vort
positions we build up the phase field“ ũ( j ) using the peri-
odic image of the minimal energy solution for each sing
vortex,¹2ũ50, due to Gro”nbech-Jensen@49#:

du/dx52p (
n52`

`

sin~2py!/$cosh@2p~x1n!#

2cos~2py!%,
-

,
s

-
r,

ge

x
nt

e

x

du/dy5p (
n52`

`

sin~2px!/$cosh@2p~y1n!#2cos~2px!%,

wherex andy are the relative coordinates of the vortex in
system of size unity. The solutions for every vortex~with
61 factors for vortices and antivortices, respectively! were
added together for every point in the system to obtain
fully periodic minimal-energyphase field consistent with th
vortex configuration.@Direct reconstruction of the order
parameter fieldfW proved intractable due to various counte
charge effects imposed by the periodic boundary conditio
In principle we could use our¹u reconstruction to recove
the order-parameter field with additional line integration#
To obtain more accurate vortex positions, we first ident
the lattice plaquette by windings or energy peaks, then
use bilinear interpolation@50# to more accurately locate th
zero of the order parameter within the plaquette. The sign
the vortex is determined by the winding of the phase fi
around the plaquette.

B. Simulation results

We simulate a size 5123512 system, averaging over 4
independent samples. We check that there are no signifi
finite-size effects in comparison to a 2563256-size system,
with 20 samples. The data for reconstructed correlation
currently restricted to the 2563256-size system.

In Fig. 2~a!, we plotC(r ,t) with respect to distance scale
by L1/2 @C(L1/2,t)51/2#. The scaling is excellent, and th
Gaussian-closure result (f BPT , solid line! is indistinguish-
able from the data. In Fig. 2~b!, however, the scaling col
lapse is not good with respect to the vortex separation@Lv ,
wherer51/Lv

2] @18#. It is difficult to tell from this second
plot alone whether scaling simply has a later onset time, o
scaling violations are indicated. This must be determined
a direct comparison of the length scalesLv andL1/2, as well
as by a study of the time-derivative correlationsT(r ,t), as
discussed in Sec. II.

By normalizing the correlations with the Gaussian-closu
result Cg we can sensitively probe scaling with the rea
space correlations, see Fig. 3. WhileCg is clearly too small
at large-scaled distance, correlations scale relatively well
t*1000.

The structure factor scales with respect toLk[1/̂ k&, its
inverse first moment, see Fig. 4. Also shown~solid line! is
the Fourier transform of the Gaussian-closure predicti
which slightly but systematically under and overestima
the structure. By using a log-log plot we emphasize
S(k);rde fk

24 generalized Porod tail fork/^k&*2, as per
Eq. ~4!. The good scaling of the Porod tail, which is dete
mined by the vortex density, indicates thatLk;Lv asymp-
totically.

We now directly test the assumption that all lengths
ymptotically have the scaling growth law of Eq.~2! by plot-
ting t/L2 vs lnt for L1/2, Lk , andLv , in Fig. 5. The scaling
prediction is a linear plot, with nonuniversal slope and int
cept given by the amplitudeA and time scalet0. @Both of
these can vary from one length scale to another.# Linearity is
observed for lnt*7.7 (t*2200), in agreement with Fig. 3
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PRE 60 217DYNAMICAL SCALING: THE TWO-DIMENSIONAL XY . . .
FIG. 2. ~a! Real-space correlations vsx5r /L1/2, where
C(L1/2)51/2. The continuous curve represents the theoretical
diction f BPT(x). ~b! Attempted scaling with respect to the vorte
density.

FIG. 3. The difference between measured correlationsC(r ,t)
and the Gaussian-closure predictionCg normalized byCg and plot-
ted against scaled distance.
We have fit them with straight lines with the same amplitu
A but differentt0. The correlation lengthL1/2 has the stron-
gest corrections to scaling, which is one cause of the
scaling ofC(r ,t) when plotted vsLv in Fig. 2~b!. It is worth
noting that the growing length scales can also be well
using effective exponents of 0.42, 0.40, and 0.40(60.01),
respectively, without logarithmic factors — see also@18,22#.
However, if these effective exponents were asymptotica
valid, and hence disagreed with the scaling prediction of
2, we would not see scaling in the correlations@27#.

While the two-point correlationsC(r ,t) and S(k,t) sup-
port dynamical scaling, we must also investigate the tim
derivative correlation function,T(r ,t), as discussed in Sec
II. In Fig. 6, we scale lengths with respect toL1/2, and re-
move the prefactor in Eq.~5! by plotting T(r ,t)/T(L1/2,t).
While scaling only sets in fort*2000, it is supported by the
data. This correlation function has much more structure t

e-

FIG. 4. The structure factor in a log-log Porod plot. The fir
moment^k& is used to rescale momenta. The continuous line is
Gaussian-closure prediction. Symbols are the same as the pre
figure.

FIG. 5. We plott/L2 vs lnt for three lengths:L1/2, Lk , andLv .
The observed linear dependence at late times indicates that th
namical scaling growth law, Eq.~2!, holds. As shown by the paral
lel straight lines, the offset~given by t0! is nonuniversal.
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218 PRE 60F. ROJAS AND A. D. RUTENBERG
the equal time correlations, such as a local maximum ax
'2.3 and a logarithmic divergence at smallx due to fast
vortex annihilations. As a result, it provides a more string
test of the Gaussian-closure approximation. We find sign
cant discrepancies, the first to be found in two-point corre
tion functions.

Further confirmation of scaling inT(r ,t) is found by ex-
ploring the time dependence of the amplitudeT(L1/2,t)
;t2m, see Fig. 7. The scaling form in Eq.~5! gives m52
~independent of logarithms!, and we findm52.060.1. This
is consistent with scaling. In combination with the scaling
C(r ,t) @andS(k,t)#, and the consistency of the growth law
of all measured length scales with the scaling result, we c
clude that the quenched 2DXY model dynamically scales.

In the equilibrium 2DXY model, the singular~vortex!
and nonsingular~spin-wave! degrees of freedom have inde
pendent contributions to the free energy@51#. Could it be
possible for such distinct ‘‘singular’’ and ‘‘nonsingular’
length scales to exist in phase-ordering systems~see, e.g.,
@52#!? If separation of vortices and spin-waves occurs,
expect spin-wave contributions to have a characteristic s

FIG. 6. Scaling plot ofT(r ,t)/T(L1/2,t) vs r /L1/2. The continu-
ous curve is the theoretical prediction of the Gaussian clos
scheme — significant deviations are apparent.

FIG. 7. Log-log plot of the time-dependent prefactor of t
time-derivative correlation function. The best fit over the ran
shown yields a decay 1/tm with an exponentm51.96. Varying the
fit range yieldsm52.060.1.
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FIG. 8. Snapshots ofu¹uu for a 2563256-size system at two
times after the quench. The left column shows the directu¹uu, with
contour levels at 0.1, 0.2, 0.4, 0.8, and 1.6.@Note that the lattice
spacing defines a unit of length, so the largest gradient magnitu
p.# The right column showsu¹uu periodically reconstructed using
only the vortex positions, with the same contour levels. Signific
differences between the direct and reconstructed¹u field can be
seen away from the immediate vicinity of the vortices.

FIG. 9. Direct and reconstructed¹u correlations,D(r ,t), and
Dr(r ,t), respectively, normalized by vortex density for a scali
plot vs scaled distance. Scaling is observed after the earliest ti
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L;t1/2, i.e., to have a faster decay with no logarithmic fac
@27#; in which case, either the direct correlations should ha
scaling violations due to the different length scale or the s
waves should be asymptotically irrelevant — leaving the
rect and reconstructed correlations asymptotically equa
late times. As can be seen from the snapshots ofu¹uu in Fig.
8, the reconstruction maintains the vortex locations and
periodic. Indeed, the reconstruction provides theminimal en-
ergy configuration consistent with vortex positions —
other words any ‘‘nonsingular’’ contribution is absent.
Fig. 9, the correlation function for the direct and reco
structed fields are shown as a function of the scaled dista
We first notice that both correlations scale with respect
Lv5r21/2 but with different functional forms.Dr has a
sharper knee atrr1/2.0.7, for example. This knee reflec
the faster decay of¹u from the vortex core in the recon
structed configurations, as is apparent in Fig. 8. The sign
cant differences between the bare and reconstructed cor
tions in the scaling limit indicate that both vortex and ‘‘spi
wave’’ contributions are relevant to the direct correlation
and that the separation seen in static properties does not
in the dynamics.

The Porod plot of the Fourier-transformed correlatio
~see Fig. 10!, further highlights the differences~note thek
→01 intercepts!. It is interesting that whilê ¹u&50, the
scaling curve has a nonconserved character. This is simil
correlations in globally conserved systems. We also obse
a k22 Porod tail fork/r1/2*2, which is expected from Fou
rier transforming the real-space scaling ansatz, Eq.~15!, and
setting the amplitude of the Porod tail proportional to t
vortex density 1/L2. The Porod tail has the same amplitu
between the direct and reconstructed correlations, reflec
the singular structure of the vortex cores.

FIG. 10. Porod plots of Fourier-transformed direct and rec
structed¹u correlations,D(k,t) and Dr(k,t), respectively. Sym-
bols are the same as the previous figure.
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V. SUMMARY AND DISCUSSION

We find no evidence for scaling violationsin the 2DXY
model. All lengths, L1/2, Lv , and Lk , have the same
asymptotic form given by Eq.~2!, albeit with different non-
universal coefficients. Real-space correlations, structure,
time-derivative correlations all scale as expected. Pha
gradient correlations, reconstructed from the vortex locati
to have minimal energy and hence no spin-wave contri
tions, differed significantly from the direct correlations, ind
cating that both vortex and nonsingular ‘‘spin-wave’’ cont
butions are asymptotically relevant. We expect simi
results to hold in closely related planar liquid-crystal sy
tems.

We have also shown how Gaussian-closure approxi
tions can be useful to sensitively explore scaling. This h
the added benefit of testing the approximation schemes
particular we find significant discrepancies with respect
the measured time-derivative correlations,T(r ,t). More gen-
erally, we emphasize the role of sensitive nulllike tests
checking apparent scaling violations. For example, we p
the length scales vs the expected growth law so that lin
behavior is expected if scaling is obeyed. When scaling p
dictions are available, and in the face of transient correcti
to scaling, this is preferable to the measurement of effec
exponents.

One can never absolutely rule out scaling violations,
only because simulations and experiments can never re
t→`. Each length in a system that dynamically scales w
generally have different corrections to scaling. In quenc
of the 2DXY model the leading correction is described w
by t0, the time scale of the logarithmic factor. Since scali
violations seem to be rare in quenched systems, the assu
tion should be that systems dynamically scale without stro
evidence to the contrary — including the inability to perfor
a scaling collapse withany length scale for eitherC(r ,t) or
T(r ,t). For the 2DXY model, in contrast, we have show
that both C and T scale with thesame length L1/2. This
provides a self-consistent confirmation of dynamical scali

For some systems, including this one, the scaling gro
law can be independently determined. This is invalua
when long-lived ~logarithmically decaying! corrections to
scaling are expected. The scaling of some other length
the problem can sometimes also be required for consiste
In this case the defect-separation scaleLv is needed to set the
Porod amplitude, and hence must be asymptotically con
tent with the lengthsLk andL1/2 extracted fromS(k,t) and
C(r ,t), respectively.
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